America’s Container Ports:
Freight Hubs That Connect Our Nation to Global Markets

June 2009
America’s Container Ports:
Freight Hubs That Connect Our Nation to Global Markets

June 2009
Research and Innovative Technology Administration
Bureau of Transportation Statistics

To obtain America's Container Ports, 2009
and other BTS publications
Mail: Product Orders
 Research and Innovative Technology Administration
 Bureau of Transportation Statistics
 U.S. Department of Transportation
 1200 New Jersey Avenue, SE
 Washington, DC 20590

Internet: www.bts.gov

BTS Information Service
E-mail: answers@bts.gov
Phone: 800-853-1351

Recommended citation

All material contained in this report is in the public domain and may be used and reprinted without special permission; citation as to source is required.

Cover photos by Chester Ford
Acknowledgments

Produced under the direction of:
Deborah D. Johnson
Assistant Director, Office of Transportation Analysis

Project Manager
Long X. Nguyen

Major Contributors
Felix Ammah-Tagoe
E-Ternational
Shana Johnson
E-Ternational

Other Contributors
Steve Beningo
Matt Chambers
Jacob Hommeland
Gail Perkins

RITA Editor
William H. Moore

RITA Visual Information Specialist
Alpha Wingfield
Table of Contents

Overview .. 1
Introduction .. 3
Effects of Drop in Container Throughput ... 6
Trends in Container Throughput .. 7
Gateways for Inbound and Outbound Traffic ... 11
Port Concentration ... 14
Regional Shifts in Port Market Share .. 15
Vessel Calls and Capacity ... 16
Ranking of U.S. Ports Among World’s Top Ports .. 18
Trading Partners ... 19
Entries of Oceanborne Container Units ... 21
Container Entries by All Modes from All Countries ... 21
Spotlight 1: Landside Access to Seaports ... 23
Spotlight 2: Maritime Security ... 26
Spotlight 3: Ports and Environmental Concerns .. 29
References .. 31
List of Abbreviations ... 33
Glossary .. 34
Overview

The U.S. marine transportation system continues to handle large volumes of domestic and international freight in support of the nation’s economic activities. The demand for freight transportation responds to trends in global economic activity and merchandise trade. When U.S. businesses produce more goods, the demand for freight transportation services to move raw materials and finished products to markets and customers around the country and world will increase. When economic conditions result in less production, the demand for transportation services will decrease.

This report provides an overview of the movement of maritime freight handled by the nation’s container seaports in 2008 and summarizes trends in maritime freight movement since 1995. It covers the impact of the recent U.S. and global economic downturn on U.S. port container traffic, trends in container throughput, concentration of containerized cargo at the top U.S. ports, regional shifts in cargo handled, vessel calls and capacity in ports, the rankings of U.S. ports among the world’s top ports, and the number of maritime container entries into the United States relative to truck and rail containers. The report also presents snapshots of landside access to container ports, port security initiatives, and ongoing maritime environmental issues.

The principal findings of the report include the following:

- Maritime freight handled by U.S. container ports fell sharply towards the end of 2008, and the decline continued into the first quarter of 2009. Total U.S. containerized cargo for December 2008 was down 18 percent compared with December 2007. The decline was severe at the nation’s two leading container ports, Los Angeles and Long Beach, which experienced 13 and 25 percent drops, respectively.

- Overall in 2008, U.S. container ports handled 28.2 million loaded TEUs (20-foot equivalent units—a measure for counting containers), a 3 percent drop from the 29 million TEUs handled in 2007.

- In 2008, containerized freight throughput fell for each of the leading ports in the Pacific/west coast, Atlantic/east coast, and gulf coast regions. West coast ports had a 5 percent decline, east coast ports a less than 1 percent decline, and gulf coast ports a 3 percent decline.

- The consequences of the 2008 decline in container throughput at the nation’s seaports reached beyond the marine ports and terminals, affecting containership fleet capacity, the railroads and commercial trucks that service the seaports, and the inland warehouses and distribution centers that provide logistical support for the entire multimodal freight supply chain.

- In 2008, the decline in maritime containerized cargo impacted international intermodal containers handled by the nation’s Class I railroads, which fell 7 percent from 2007. It also affected overall trucking activity, which saw record declines in the second half of 2008.

- Despite the 2007 to 2008 declines, today 1 container in every 10 that is engaged in global trade is either bound for or originates in the United States, accounting for 10 percent of worldwide container traffic.

- On a typical day in 2008, U.S. container ports handled an average of 77,000 TEUs, up from 37,000 TEUs per day in 1995.

- In 2008, the top 10 U.S. container ports accounted for 86 percent of containerized TEU imports and exports, up from 78 percent in 1995.

- In 2008, 3 U.S. ports—Los Angeles, Long Beach, and New York/New Jersey—ranked among the world’s top 20 container ports when measured by TEUs, placing 16th, 17th, and 20th, respectively.
• In 2007, there were nearly 20,000 containership calls at U.S. seaports, accounting for 31 percent of the total oceangoing vessel calls made by all vessel types at U.S. ports.

• In 2007, there were about 12 million oceanborne container entries into the United States, down slightly from 2006 but still double those of 2000.

• In April 2009, a U.S.-flagged container vessel with 20 American sailors was hijacked by pirates off the coast of Somalia, highlighting the challenge of fully securing maritime cargo throughout the entire global logistics supply chain.
Introduction

America’s container ports play an important role in handling U.S. merchandise trade moving to and from distant places around the world. Each year, these seaports handle exports produced at U.S. factories and farms and imports of goods such as automobiles, machinery, electronics, apparel, shoes, toys, and food. American households depend on the nation’s container seaports for everyday items, and American businesses depend on these seaports for facilitating the exchange of merchandise with trading partners around the world.

During 2008, the volume of maritime freight handled by America’s container ports dropped. U.S. international merchandise trade transported by maritime container vessels fell sharply toward the end of the year, a decline that continued into 2009. Total U.S. containerized freight for December 2008 was down 18 percent compared with December 2007 (table 1). Maritime containerized imports declined 15 percent, and exports fell by 21 percent (JOC PIERS 2009a). This happened as U.S. businesses cut inventories, manufacturing and construction activities stalled, and Americans cut back on spending as unemployment rose, home values fell, and investment portfolios shrank.

The year 2008 was exceptionally challenging for the nation’s leading container seaports. After a steady pace at the beginning of the year, by end of 2008, containerized freight throughput declined for each of the leading ports in the Pacific/west coast, Atlantic/east coast, and gulf coast regions (table 1). All the major ports saw a decline in December 2008 compared with the same month in the previous year. The nation’s two leading container ports, Los Angeles and Long Beach, experienced 13 and 25 percent year-on-year drops, respectively. Other leading ports saw worse declines in container traffic, with cargo falling by more than one-third to almost one-half—for example, Seattle fell 38 percent and Mobile fell 49 percent.

By the end of 2008, U.S. total maritime container traffic at all U.S. ports was estimated at 28.2 million TEUs (see box), a 3 percent drop from the 29 million TEUs in 2007 (table 1). During 2008, west coast ports had a 5 percent decline in container traffic and gulf coast ports had a 3 percent decline. East coast ports had a 0.2 percent, or essentially negligible, increase. Among the nation’s top 10 leading container ports, 7 saw declines in their container cargo throughput in 2008. The two largest declines were Seattle at 16 percent and Long Beach at 8 percent (table 1 and figure 1). Only 3 of the top 10 ports, all on the east coast, handled slightly more container cargo in 2008 than in 2007—Savannah grew by 3.6 percent, New York/New Jersey by 1.4 percent, and Norfolk by 1.2 percent. These east coast ports tend to have a more diversified trade market with Europe, Asia, Latin America, and South America, unlike the west coast ports, which trade almost exclusively with the Asia-Pacific market.

Containerized trade between the United States and the rest of the world fell in 2008 because of the combined influence of weak domestic consumer demand, which cut import levels, and the global economic slowdown, which cut foreign demand for U.S. exports. During the second half of 2008, as the U.S. financial crisis began to directly impact consumer spending, Americans cut back on their purchase of imported clothes, automobiles, and other consumer merchandise, such as toys and flat-panel televisions.

In addition, as the domestic financial crisis deepened and the global recession widened, overseas trading partners’ demand for U.S. goods started to tumble, further weakening
The declines in maritime container traffic mirrored the slide in overall U.S. international merchandise exports and imports transported by all modes of transportation in 2007 and 2008 and followed the trend in the national economy as a whole (figure 2 and figure 3). According to the U.S. Department of Commerce, the primary contributors to the declines in merchandise exports and imports in the fourth quarter of 2008 were industrial supplies and materials; automotive vehicles, parts, and engines; consumer goods; and foods, feeds, and beverages (USDOC CB BEA 2009). When adjusted for inflation, the value of merchandise exports in the fourth quarter of 2008 dropped 34 percent compared with that of the third quarter. The value of merchandise imports dropped 19 percent (figure 3).

Trends in container shipping are directly related to patterns in overall international trade, which is a primary contributing factor in the nation’s economic growth. For example, real gross domestic

TABLE 1

Maritime Container Cargo Handled at Leading U.S. Container Ports: 2007 and 2008

(Thousands of TEUs)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>December 2007</td>
<td>December 2008</td>
</tr>
<tr>
<td>West coast total</td>
<td>1,177</td>
<td>939</td>
</tr>
<tr>
<td>Los Angeles, CA</td>
<td>450</td>
<td>393</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>391</td>
<td>294</td>
</tr>
<tr>
<td>Oakland, CA</td>
<td>115</td>
<td>95</td>
</tr>
<tr>
<td>Tacoma, WA</td>
<td>93</td>
<td>71</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>106</td>
<td>66</td>
</tr>
<tr>
<td>Other ports</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>East coast total</td>
<td>976</td>
<td>820</td>
</tr>
<tr>
<td>New York/New Jersey</td>
<td>316</td>
<td>279</td>
</tr>
<tr>
<td>Savannah, GA</td>
<td>162</td>
<td>138</td>
</tr>
<tr>
<td>Norfolk, VA</td>
<td>131</td>
<td>104</td>
</tr>
<tr>
<td>Charleston, SC</td>
<td>111</td>
<td>81</td>
</tr>
<tr>
<td>Port Everglades, FL</td>
<td>59</td>
<td>48</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>Wilmington, NC</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Other ports</td>
<td>126</td>
<td>115</td>
</tr>
<tr>
<td>Gulf coast total</td>
<td>165</td>
<td>147</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>115</td>
<td>104</td>
</tr>
<tr>
<td>Mobile, AL</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Other ports</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>U.S. total TEUs</td>
<td>2,318</td>
<td>1,906</td>
</tr>
</tbody>
</table>

KEY: TEUs = twenty-foot equivalent units. One 20-foot container equals one TEU, and one 40-foot container equals two TEUs.

FIGURE 1
Maritime Container Cargo Handled at Top 10 U.S. Container Ports: 2007 and 2008 (Millions of TEUs)

FIGURE 2
Quarterly Value of Total U.S. International Merchandise Trade: 2007 and 2008 (Billions of chained 2000 dollars)

NOTE: To compare economic changes over time, current or nominal values of currencies are adjusted for inflation. In the United States, the Bureau of Economic Analysis establishes indices to calculate changes between years. These are used to calculate real chained dollars. Annual changes in the indices are chained (multiplied) together to form a time series. Chained dollars, instead of merely reflecting inflation, capture the effect of relative changes in prices and in the composition of output. They also better reflect cyclical fluctuations in the economy.

product (GDP)—the output of goods and services produced by labor and property located in the United States—decreased at an annual rate of 6 percent in the fourth quarter of 2008 (i.e., from the third quarter to the fourth quarter). In the third quarter, real GDP decreased 0.5 percent (USDOC BEA 2009). The slowdown in real GDP primarily reflected a sharp decline in personal consumption expenditure, the downturn in exports and imports, and a decline in state and local government spending.

Declines in economic activity and drops in exports and imports result in reduced demand for freight transportation services by all modes of transportation. However, because the majority of U.S. overseas merchandise trade (over 66 percent by value and 99 percent by weight) moves by ocean vessel (USDOC CB 2009), the nation’s container ports felt the crunch immediately, but the effects were not limited to the seaports.¹

¹ As used here, overseas trade excludes U.S. merchandise trade with Canada and Mexico.

FIGURE 3
Quarter-to-Quarter Percent Change in Real Gross Domestic Product: 2007–2008 (Percent)

NOTE: Real GDP growth is measured at seasonally adjusted annual rates based on chained 2000 dollars.

EFFECTS OF DROP IN CONTAINER THROUGHPUT

The consequences of the 2008 decline in container throughput at the nation’s seaports reached beyond marine ports and terminals, affecting containership fleet capacity, railroads and commercial trucks that service the seaports, and the inland warehouses and distribution centers that provide logistical support for the entire multimodal freight supply chain. First, because of the decline in global demand for containership services, the estimated number of container vessels idled at seaports worldwide soared by March 2009 to a record high of more than 450 ships with a carrying capacity of 1.4 million TEUs (AXS-Alphaliner 2009). These idle container vessels accounted for approximately 11 percent of the world containership fleet. The capacity of idle container vessels worldwide nearly tripled from the beginning of 2008, when it was estimated to be about 210 ships and 550,000 TEUs.
Second, with the overall decline in containerized exports and imports, the number of intermodal2 shipping containers and truck trailers transported nationwide on railcars by the nation’s Class I railroads3 in 2008 was 11.5 million units, down 4 percent from 12 million in 2007 and from a record high of 12.3 million in 2006. About 60 percent of rail intermodal traffic consists of merchandise imports and exports (AAR 2009). In 2008, the number of international intermodal containers moved by rail from the seaports totaled 7.8 million, a decrease of 7 percent from 2007 (Intermodal Association of North America 2008). The imports arrive on ocean vessels and are long-hauled by railcars to destinations across the county, and the exports originate all across the nation and are headed for destinations around the world.

In one example of the severity of the declines, the leading Class I railroad for handling intermodal shipments from west coast ports, Union Pacific (UP), reported that the major economic downturn during the fourth quarter of 2008 compounded already declining intermodal volumes experienced earlier in the year and resulted in fewer intermodal shipments (Union Pacific Corp. 2009). UP’s intermodal traffic from west coast intermodal terminals was 1.5 million container units in 2008, down 7 percent from 1.6 million units in 2007. In particular, at the Intermodal Container Transfer Facility in Los Angeles, UP’s intermodal traffic dropped 13 percent during the same period.

There were similar declines in trucking services in the second half of 2008, resulting in record lows for overall freight trucking activity. In December 2008, according to the American Trucking Association (ATA), trucking activity nationwide was down 13 percent from December 2007. Trucking services declined for 6 consecutive months, from June through December 2008 (ATA 2009).

Nationwide freight activity for all modes, measured by the Freight Transportation Services Index (TSI), declined 3.0 percent in 2008. According to the TSI, this decline was the third consecutive annual decline and the largest since 2000 (USDOT RITA BTS 2009). The freight TSI measures changes in the output of services provided by the for-hire freight transportation industries and consists of data from for-hire trucking, rail, inland waterways, pipelines, and air freight.

Third, the slowdown of economic activity within the United States, the reduction in consumer spending on foreign goods, and the decline in demand for freight transportation services resulted in excess inventory for certain imported products moved by ocean vessels, especially foreign automobiles. By March 2009, the parking lots of the nation’s top auto ports had thousands of new car imports that could not be moved out. Auto dealers could not take delivery of them because of the drop in consumer demand and the lack of bank credit to finance their inventories (Leach 2009). The Port of Baltimore, the top auto-handling port in the United States, had about 57,000 new cars at its terminals and the port had to store some at the nearby Baltimore-Washington International Marshall Airport (Dennis 2009). Storage of imported autos at U.S. seaports further reduces demand for train and truck services to transport them to dealerships, dampens the market for third-party logistics services, decreases overseas car manufacturing, and ultimately increases the number of ocean vessels that are idled.

\textbf{TRENDS IN CONTAINER THROUGHPUT}

Despite the 2008 decline in the nation’s economic activity and international merchandise exports and imports, the United States remains the world’s largest trading...
nation with the world’s biggest economy. Today, 1 container in every 10 carrying global trade is bound for or originates in the United States, accounting for 10 percent of worldwide container traffic. In 2008, world maritime container traffic (loaded and empty) was estimated at over 387 million TEUs, down from 437 million TEUs transported in 2007 (table 2).

Between 1995 and 2008, world container traffic more than tripled in volume from 137 million TEUs to 387 million TEUs, growing at an average annual rate of about 8 percent (table 2). This continued long-term growth in maritime container freight reflects sustained U.S. and global economic activity. During this same period, U.S. total container traffic more than doubled in volume from 22 million TEUs in 1995 to an estimated 45 million in 2007, falling to about 38 million in 2008. From 1995 to 2008, U.S. total TEUs rose at an average annual rate of 4.2 percent. The primary factors underlying the long-term growth in U.S. maritime container traffic are the proportion of merchandise trade transported in containers; rising trade with Asia-Pacific trading partners, particularly China; and the increasing importance of merchandise trade to U.S. economic activity. Looking ahead, the volume of containers that U.S. seaports handle in the coming years will mainly be determined by how much the United States continues to rely on imported manufactured goods, which countries it trades with most, and what kinds of products it imports rather than produces domestically. Rising demand for foreign manufactured products would mean super-sized container vessels would carry such

TABLE 2

<table>
<thead>
<tr>
<th>Year</th>
<th>World (millions)</th>
<th>United States (millions)</th>
<th>U.S. share of world total (percent)</th>
<th>U.S. rank</th>
<th>World GDP (billions)</th>
<th>United States (billions)</th>
<th>U.S. share of World GDP (percent)</th>
<th>U.S. rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>137.2</td>
<td>22.3</td>
<td>16.3</td>
<td>1</td>
<td>29,391</td>
<td>7,398</td>
<td>25.2</td>
<td>1</td>
</tr>
<tr>
<td>1996</td>
<td>150.8</td>
<td>22.6</td>
<td>15.0</td>
<td>1</td>
<td>30,080</td>
<td>7,817</td>
<td>26.0</td>
<td>1</td>
</tr>
<tr>
<td>1997</td>
<td>160.7</td>
<td>24.5</td>
<td>15.3</td>
<td>1</td>
<td>29,928</td>
<td>8,304</td>
<td>27.7</td>
<td>1</td>
</tr>
<tr>
<td>1998</td>
<td>169.6</td>
<td>26.2</td>
<td>15.4</td>
<td>2</td>
<td>29,682</td>
<td>8,747</td>
<td>29.5</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>184.6</td>
<td>28.0</td>
<td>15.2</td>
<td>2</td>
<td>30,786</td>
<td>9,268</td>
<td>30.1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>233.5</td>
<td>30.4</td>
<td>13.0</td>
<td>2</td>
<td>31,650</td>
<td>9,817</td>
<td>31.0</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>245.1</td>
<td>30.7</td>
<td>12.5</td>
<td>2</td>
<td>31,456</td>
<td>10,128</td>
<td>32.2</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>269.5</td>
<td>32.7</td>
<td>12.1</td>
<td>2</td>
<td>32,714</td>
<td>10,470</td>
<td>32.0</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>307.4</td>
<td>36.3</td>
<td>11.8</td>
<td>2</td>
<td>36,751</td>
<td>10,961</td>
<td>29.8</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>300.8</td>
<td>38.7</td>
<td>12.9</td>
<td>2</td>
<td>41,258</td>
<td>11,686</td>
<td>28.3</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>306.0</td>
<td>42.0</td>
<td>13.7</td>
<td>2</td>
<td>44,455</td>
<td>12,422</td>
<td>27.9</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>426.4</td>
<td>44.4</td>
<td>10.4</td>
<td>2</td>
<td>48,665</td>
<td>13,178</td>
<td>27.1</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>436.6</td>
<td>45.0</td>
<td>10.3</td>
<td>2</td>
<td>54,585</td>
<td>13,808</td>
<td>25.3</td>
<td>1</td>
</tr>
<tr>
<td>2008</td>
<td>387.1</td>
<td>38.0</td>
<td>9.8</td>
<td>2</td>
<td>60,863a</td>
<td>14,265</td>
<td>23.4</td>
<td>1</td>
</tr>
</tbody>
</table>

Percent change, 1995-2008 182.1 70.1
Average annual rate (percent), 1995-2008 8.3 4.2

*World 2008 GDP is an estimate that includes projections by the International Monetary Fund for some countries.

KEY: TEUs = twenty-foot equivalent units. One 20-foot container equals one TEU, and one 40-foot container equals two TEUs.

products to the nation’s seaports, enabling continued growth in containerization.\(^4\)

The United States ranked second in container traffic in 2007, a position it has held since China took over the number one position in 1998. Nonetheless, the United States remains the leading trading nation, accounting for 11 percent of total world merchandise trade in 2007 (figure 4). U.S. total imports ranked first, accounting for over 14 percent of the global imports in 2007. U.S. total exports accounted for 8 percent of global exports, behind Germany, the leading exporter (WTO 2008). The United States also remained the world’s largest economy, accounting for 23 percent of World GDP in 2008, down slightly from 25 percent in 1995 (table 2).

\(^4\) Containerization is a form of transportation in which the size and shape of freight is standardized through the use of containers to allow fast mechanical handling of cargo at seaports. It differs sharply from the labor-intensive and time-consuming break-bulk method of handling cargo of varying sizes and shapes.

From 1995 to 2008, the volume of containerized cargo moving through U.S. seaports grew at a faster rate, 6 percent, than U.S. real GDP growth, 3 percent (figure 5). During most of the 1990s, strong growth of the U.S. economy, rising household wealth and income in the United States, and steady consumer demand at home spurred U.S. international goods trade, which resulted in greater demands for containerized freight transportation services.

A comparison of the year-on-year percent change between U.S.-loaded container TEUs and real GDP shows a correlation between the container maritime industry trends and general economic conditions (figure 6). This comparison shows the effect that economic cycles have on the U.S. container trade, as evidenced by the declines in TEUs during the 2001 and 2008 recessions. As figure 6 shows, the container trade trend is more volatile than the GDP trend. However, assuming that the strong cyclical relationship continues, when the U.S. economy recovers and the volume of merchandise imports and ex-

FIGURE 4
World’s Top Merchandise Trade Countries: 2007
(Percent)

```
United States 11.3
Germany 8.5
China 7.7
Japan 4.7
France 4.1
United Kingdom 3.8
Netherlands 3.7
Italy 3.5
Belgium 3.0
Canada 2.9
Hong Kong, China 2.6
Korea, Republic of 2.6
Spain 2.2
Mexico 2.0
Singapore 2.0
```


U.S. container traffic doubled over the past decade, and the growth trend is expected to continue.
FIGURE 5
(Index 2000 = 100)

NOTE: Real GDP growth is measured at seasonally adjusted annual rates based on chained 2000 dollars. TSI figures are annualized estimates based on the monthly published estimates. TEUs = twenty-foot equivalent units.

FIGURE 6
Year-on-Year Percent Change in U.S. Container Trade and Real GDP: 1995–2008
(Percent)

NOTE: Real GDP growth is measured at seasonally adjusted annual rates based on chained 2000 dollars.

Box 1
Repositioning of Empty Containers

A broad challenge facing the U.S. maritime industry is the repositioning of empty containers after they have been emptied of the goods they transported to the United States. During the past 20 years, as merchandise trade between the United States and its trading partners—particularly Asia-Pacific Rim countries— mushroomed and the trade imbalance grew, the number of empty containers idling in the United States increased. In general, the larger the trade imbalance, the greater the need to reposition empty containers for shippers to use for exports.

Although containers are designed to be reused (with new cargo loaded for a new location soon after the original cargo is off-loaded), in many cases the cost of transporting an empty container to a place where it can be reloaded is higher than the container is worth, particularly when empty containers must be transported from inland locations to U.S. shippers or overseas.

In 1997, the difference between TEUs of U.S. containerized imports and exports was about 715,000. By 2006, the difference had reached a record high of nearly 10 million TEUs. In 2008, it was about 6 million TEUs. These large numbers illustrate the magnitude of the challenge of handling idle containers.

Empty containers are stored near seaports and inland intermodal transfer locations. Los Angeles, Long Beach, and New York/New Jersey are the three largest port markets where leasing companies and shipping lines store empty containers, and Chicago, Dallas, and Memphis are notable storage locations for empty containers inland (Mongelluzzo 2008). In 2008, the nation’s top container port, the Port of Los Angeles, handled about 1.9 million TEUs of empty export containers, accounting for 51 percent of the total outbound export TEUs for the port.

As the rebound after the low year in 2009, then U.S. container seaports are likely to see a resurgence of container throughput at their terminals.

GATEWAYS FOR INBOUND AND OUTBOUND TRAFFIC

While America’s container seaports serve as gateways for both merchandise imports and exports, overall they handle more TEUs of imports than exports. In 2008, the U.S. deficit in maritime container traffic—the gap between exports and imports—narrowed to 6 million TEUs as maritime container imports fell 8 percent and exports grew 6 percent (figure 7). This marked the second year in a row that the deficit fell following record high imports in 2006. In 2007 and 2008, although the United States exported less abroad than it imported, imports declined steeply because of the economic slowdown at home. Exports grew at a modest pace.

Before 1998, the deficit of U.S. international container traffic was less than 1 million TEUs per year, but by 2008, this gap had significantly widened, with imports accounting for a larger share of the total container traffic (figure 7). In 2008, maritime container imports passing through U.S. seaports accounted for 61 percent of total container traffic, a sizeable increase from 51 percent in 1995. However, container exports handled by the ports seem to be rebounding, reaching 39 percent of total container traffic in 2008, an increase from a low of 33 percent in 2005. A likely factor for the surge in exports during 2007 and 2008 is the fall of the U.S. dollar relative to the European euro and other currencies. During this period, as the dollar fell against the euro, American goods became more affordable overseas. This contributed to the rise in maritime container exports. A stronger dollar provides Americans with greater purchasing power and results in more goods being imported, while a weaker dollar leads to foreign buyers purchasing more U.S. products.

Figure 8 shows the location of the nation’s top 25 maritime container ports for U.S. international containerized exports and imports in 2008. The top three container port gateways were Los Angeles, Long Beach, and New York/New Jersey. The containerized exports and imports handled by these leading ports serve the international trade needs of every state, both coastal states with seaports as well as landlocked states that depend on seaports for their merchandise trade export and imports. The containerized cargo arrives and leaves the seaports either by rail or truck as single modes or by intermodal truck-rail combination.

Overall U.S. international maritime container traffic more than doubled between 1995 and 2008 (figure 9). In 2008, about 28 million TEUs of U.S. international oceanborne trade moved through U.S. container ports, up from 13 million in 1995 (JOC PIERS 2009b). As the rebound after the low year

* Because the merchandise trade deficit is more complicated than simple changes in relative prices, a fall in the U.S. dollar is not always effective in closing the gap between exports and imports. Domestic recessions are often more effective in cutting demand for imports and therefore reducing the trade balance.
12 America’s Container Ports

FIGURE 7
(Millions of TEUs)

FIGURE 8
(Thousands of TEUs)

KEY: TEUs – twenty-foot equivalent units. One 20-foot container equals one TEU, and one 40-foot container equals two TEUs.

NOTE: The data in this figure include only loaded containers in U.S. international maritime activity and cover U.S. imports, exports, and transshipments. Therefore, the trade levels will be greater than those reported from U.S. international trade statistics, which exclude transshipments. The data also exclude military shipments.

in 2001 suggests, long-term growth is likely to resume after the U.S. and global economies recover from the current worldwide economic downturn.

In 2008, U.S. container ports handled a daily average of 77,000 TEUs, up from 37,000 TEUs per day in 1995. This large number of containers moving through the nation’s seaports highlights the significance of container traffic and its potential impacts on the economy, local communities, national security, and the natural environment. It also underscores the challenges of handling this cargo efficiently, alleviating highway congestion around the seaports, improving landside access to ports, and removing freight bottlenecks at intermodal transfer locations where trucks and railroads connect to marine terminals.

A major factor affecting landside access to U.S. container ports is the continuing growth of containerization. Growth in containerization is directly related to the provision of adequate intermodal capacity to handle the associated increase in the level of landside traffic. For example, on a typical day in 2008, container throughput for the New York/New Jersey port, the nation’s third largest container port, was 5,265,053 TEUs (PANYNJ 2009). Assuming a typical line-haul truck carries an equivalent of two TEUs, this annual throughput translates into 2,632,526 one-way truck trips per year. This is equivalent to 10,125 truck trips each weekday resulting from containerized cargo. At approximately 40 feet per trailer, on a typical work day the trailers would stretch about 77 miles if lined up end to end.

FIGURE 9
(Millions of loaded TEUs)

KEY: TEUs = twenty-foot equivalent units. One 20-foot container equals one TEU, and one 40-foot container equals two TEUs.

NOTES: Totals are for all container ports in all 50 states and Puerto Rico. The data in this figure include only loaded containers in U.S. international maritime activity and cover U.S. imports, exports, and transshipments.

6 A line-haul truck is usually a tractor-trailer combination of three or more axles. A typical line-haul trailer is approximately 40 to 48 feet long and is permitted in most states to move a maximum of 80,000 pounds gross weight.
PORT CONCENTRATION

The geographic distribution of container activity among U.S. seaports shows a greater concentration of vessel calls and cargo traffic in a few leading ports because of increased demand for larger, faster, and more specialized vessels. Today, maxi-Panamax superfreighter vessels are much longer than two football fields and can carry up to 12,500 TEUs.\(^7\)

\(^7\) These vessels are twice as large as the post-Panamax vessels. Post-Panamax vessels are too large to pass through the Panama Canal. They can carry up to 6,500 TEUs. They typically have widths exceeding 32.2 meters (105.6 feet). Recent designs of these vessels are able to carry more than 12,000 TEUs. The world’s largest container vessel, Emma Maersk, commissioned in 2006, is officially listed as an 11,000 TEU ship, but its cargo capacity is estimated to range from 13,000 to 15,000 TEUs (http://about.maersk.com/en/Fleet/Pages/Fleet.aspx).

In 2008, the top 10 U.S. container ports accounted for 86 percent of containerized imports and exports (measured in TEUs), up from 78 percent in 1995. Five of the top 10 container ports in the United States are on the west coast, four are on the east coast, and one on the gulf coast (table 3).

From 1995 to 2008, Los Angeles and Long Beach grew the most in terms of absolute level of container traffic, reflecting increased U.S. trade with Pacific Rim\(^8\) countries, particularly China, and the transportation of higher-value per ton Asian manufactured goods into the United States. New York followed closely, showing significant growth in U.S. trade with Europe. The ports of Savannah, Los Angeles, and Houston had the largest average annual growth rates (table 3). The growth rates for

\(^8\) Pacific Rim refers to Australia, Cambodia, China, Indonesia, Japan, Malaysia, New Zealand, Philippines, Singapore, South Korea, Taiwan, Thailand, Vietnam, and various Pacific islands.

TABLE 3

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles, CA</td>
<td>1,849</td>
<td>3,228</td>
<td>5,740</td>
<td>5,671</td>
<td>5,066</td>
<td>8,843</td>
<td>15,727</td>
<td>15,537</td>
<td>-1.2</td>
<td>206.7</td>
<td>9.0</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>2,137</td>
<td>3,204</td>
<td>4,995</td>
<td>4,612</td>
<td>5,855</td>
<td>8,777</td>
<td>13,685</td>
<td>12,635</td>
<td>-7.7</td>
<td>115.8</td>
<td>6.1</td>
</tr>
<tr>
<td>New York/New Jersey, NY/NJ</td>
<td>1,537</td>
<td>2,200</td>
<td>3,935</td>
<td>3,992</td>
<td>4,211</td>
<td>6,028</td>
<td>10,782</td>
<td>10,938</td>
<td>1.4</td>
<td>159.7</td>
<td>7.6</td>
</tr>
<tr>
<td>Savannah, GA</td>
<td>445</td>
<td>720</td>
<td>2,042</td>
<td>2,116</td>
<td>2,077</td>
<td>3,414</td>
<td>5,939</td>
<td>5,797</td>
<td>3.6</td>
<td>375.5</td>
<td>12.7</td>
</tr>
<tr>
<td>Norfolk, VA</td>
<td>647</td>
<td>850</td>
<td>1,573</td>
<td>1,592</td>
<td>1,219</td>
<td>1,973</td>
<td>4,310</td>
<td>4,360</td>
<td>1.2</td>
<td>146.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Oakland, CA</td>
<td>919</td>
<td>989</td>
<td>1,451</td>
<td>1,395</td>
<td>2,518</td>
<td>2,709</td>
<td>3,976</td>
<td>3,821</td>
<td>-3.9</td>
<td>51.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Charleston, SC</td>
<td>758</td>
<td>1,246</td>
<td>1,416</td>
<td>1,371</td>
<td>2,721</td>
<td>2,630</td>
<td>3,879</td>
<td>3,756</td>
<td>-3.2</td>
<td>80.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>489</td>
<td>733</td>
<td>1,408</td>
<td>1,331</td>
<td>1,773</td>
<td>2,330</td>
<td>3,859</td>
<td>3,646</td>
<td>-5.5</td>
<td>172.2</td>
<td>8.0</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>993</td>
<td>960</td>
<td>1,151</td>
<td>1,129</td>
<td>1,340</td>
<td>2,009</td>
<td>3,152</td>
<td>3,094</td>
<td>-1.9</td>
<td>13.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Tacoma, WA</td>
<td>604</td>
<td>647</td>
<td>1,289</td>
<td>1,083</td>
<td>1,654</td>
<td>1,773</td>
<td>3,533</td>
<td>2,966</td>
<td>-16.0</td>
<td>79.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Total top 10 ports</td>
<td>10,378</td>
<td>14,777</td>
<td>25,001</td>
<td>24,291</td>
<td>28,432</td>
<td>40,486</td>
<td>68,495</td>
<td>66,550</td>
<td>-2.8</td>
<td>134.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Total all ports(^1)</td>
<td>13,328</td>
<td>17,938</td>
<td>28,969</td>
<td>28,190</td>
<td>36,515</td>
<td>49,144</td>
<td>79,368</td>
<td>77,234</td>
<td>-2.7</td>
<td>111.5</td>
<td>5.9</td>
</tr>
</tbody>
</table>

| Top 10, percent of total | 77.9 | 82.4 | 86.3 | 86.2 | 77.9 | 82.4 | 86.3 | 86.2 | -2.7 | 111.5 | 5.9 |

\(^1\) All container ports in all 50 states and Puerto Rico.

KEY: TEUs = twenty-foot equivalent units. One 20-foot container equals one TEU, and one 40-foot container equals two TEUs.

NOTE: The data in this table include only loaded containers in U.S. international maritime activity and cover U.S. imports, exports, and transshipments. Therefore, the trade levels will be greater than those reported from U.S. international trade statistics, which exclude transshipments. The data also exclude military shipments.

SOURCE: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, based on data from U.S. Department of Transportation, Maritime Administration, which are drawn from The Journal of Commerce, Port Import Export Reporting Service (PIERS) as of Mar. 20, 2009.
Savannah and Houston reflect the expansion in U.S. container trade with Latin American countries and changes in the location of freight logistics and distribution service centers.

Despite the national economic slowdown, container cargo handled by the Port of Savannah grew 4 percent in 2008 over 2007, the fastest growth among the leading container ports. Between 1995 and 2005, oceanborne containerized cargo handled there increased by 13 percent, making it the fastest growing port in the nation. This growth in Savannah’s containerized traffic also underscores the increase in retail import distribution centers in the Savannah area—several national retailers have established large distribution centers there for handling the thousands of TEUs transiting the nation’s seaports.

REGIONAL SHIFTS IN PORT MARKET SHARE

The increased use of oceanborne containers in transporting U.S. international trade continues to affect port operations and the distribution of total maritime trade among U.S. ports. Before the mid-1980s, when U.S. trade with Pacific Rim Asian countries was modest, east coast ports handled the majority of U.S. international maritime trade. As trade with Asia grew, the east coast ports’ share of the value of trade declined and west coast ports’ share increased (figure 10). Eventually, west coast ports surpassed east coast ports in maritime cargo handled, and this trend has continued to today. Also during this period, changes in industrial activity in the Midwest affected the volume and type of cargo moving through Great Lakes ports. For example, the relocation of final automobile assembly plants and companies that produce auto parts had an impact on manufacturing activities in the Midwest. With the emergence of automakers and parts producers in other parts of the United States, maritime cargo originating in the Midwest and cargo transport via the Great Lakes dwindled. Gulf of Mexico ports experienced a modest increase in their relative share as trade with Latin America grew.

Over half of U.S. containerized merchandise trade, measured in terms of TEUs, passes through west coast ports. In 2007, 55 percent of the container-
ized imports and exports passed through these ports, up from 42 percent in 1980 (figure 10). West coast ports as a region grew the fastest during this period (figure 11).

Although west coast ports handled the most container trade, they also had a larger share of the oceanborne containerized trade deficit, in terms of export-import balance, than other regional ports. Today, west coast ports serve more as import gateways to the United States than as export gateways to the rest of the world. In contrast, east coast ports handle more exports than imports, despite the decline in their regional market share.

Container trade also affects the pattern of freight movement within the United States. Nearly all U.S. oceanborne container trade is transported throughout the country by either rail carriers, long-haul truck carriers, or local truck carriers. Some ports use short-sea shipping as an alternative to transport goods shorter distances. The availability and efficiency of intermodal transportation in moving these goods to and from any U.S. port increases shippers’ choices of transportation modes and port facilities, allowing ports to effectively use their economies of scale to attract cargo from beyond their immediate region. The growth in U.S. containerized cargo shipping is placing pressure on the nation’s transportation network and affects local traffic congestion and delays in the urban areas surrounding the major U.S. container ports. (See Spotlight 1 on landside access to the seaports.)

VESSEL CALLS AND CAPACITY

During the past two decades, the concentration of maritime container vessel calls at U.S. ports has shifted as the volume of containerized cargo handled by the ports has changed. In 2007, there were nearly 20,000 containership calls at U.S. seaports, accounting for 31 percent of the

9 Short-sea shipping describes the movement of freight along coastal waterways (for example, from Long Beach to Portland or from New York/New Jersey to Savannah). It includes the movement of containers and wet and dry bulk cargoes.
<table>
<thead>
<tr>
<th>Ranked by container capacity</th>
<th>Port/State</th>
<th>Calls (total vessels)</th>
<th>Capacity (dwt, thousands)</th>
<th>Calls (total vessels)</th>
<th>Capacity (dwt, thousands)</th>
<th>Calls</th>
<th>Capacity</th>
<th>All vessel types</th>
<th>Containerships as percent of port’s total vessels</th>
<th>Average vessel size per call (dwt)</th>
<th>Containerships</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Angeles/Long Beach, CA</td>
<td>5,492</td>
<td>335,898</td>
<td>3,058</td>
<td>169,562</td>
<td>55.7</td>
<td>50.5</td>
<td>61,161</td>
<td>55,449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>New York/New Jersey, NY/NJ</td>
<td>4,968</td>
<td>232,426</td>
<td>2,549</td>
<td>127,359</td>
<td>51.3</td>
<td>54.8</td>
<td>46,785</td>
<td>49,964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>San Francisco, CA</td>
<td>3,945</td>
<td>212,966</td>
<td>2,046</td>
<td>115,246</td>
<td>51.9</td>
<td>54.1</td>
<td>53,984</td>
<td>56,328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Savannah, GA</td>
<td>2,615</td>
<td>121,811</td>
<td>1,807</td>
<td>93,739</td>
<td>69.1</td>
<td>77.0</td>
<td>46,582</td>
<td>51,875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Virginia Ports, VA</td>
<td>2,775</td>
<td>137,548</td>
<td>1,940</td>
<td>91,138</td>
<td>69.9</td>
<td>66.3</td>
<td>49,567</td>
<td>46,979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Charleston, SC</td>
<td>2,160</td>
<td>96,571</td>
<td>1,589</td>
<td>76,622</td>
<td>73.6</td>
<td>79.3</td>
<td>44,709</td>
<td>48,220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Seattle, WA</td>
<td>1,042</td>
<td>59,936</td>
<td>666</td>
<td>39,485</td>
<td>63.9</td>
<td>65.9</td>
<td>57,520</td>
<td>59,287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Houston, TX</td>
<td>6,195</td>
<td>267,045</td>
<td>818</td>
<td>34,090</td>
<td>13.2</td>
<td>12.8</td>
<td>43,106</td>
<td>41,675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tacoma, WA</td>
<td>1,241</td>
<td>62,621</td>
<td>621</td>
<td>33,262</td>
<td>50.0</td>
<td>53.1</td>
<td>50,460</td>
<td>53,562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Miami, FL</td>
<td>927</td>
<td>31,184</td>
<td>563</td>
<td>26,078</td>
<td>60.7</td>
<td>83.6</td>
<td>33,640</td>
<td>46,320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Port Everglades, FL</td>
<td>1,472</td>
<td>51,636</td>
<td>739</td>
<td>25,602</td>
<td>50.2</td>
<td>49.6</td>
<td>35,079</td>
<td>34,645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Baltimore, MD</td>
<td>1,833</td>
<td>63,052</td>
<td>427</td>
<td>17,793</td>
<td>23.3</td>
<td>28.2</td>
<td>34,398</td>
<td>41,671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Philadelphia, PA</td>
<td>3,148</td>
<td>191,814</td>
<td>499</td>
<td>15,594</td>
<td>15.9</td>
<td>8.1</td>
<td>60,932</td>
<td>31,250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Honolulu, HI</td>
<td>648</td>
<td>20,798</td>
<td>412</td>
<td>12,892</td>
<td>63.6</td>
<td>62.0</td>
<td>32,096</td>
<td>31,292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>New Orleans, LA</td>
<td>4,884</td>
<td>239,972</td>
<td>281</td>
<td>12,189</td>
<td>5.8</td>
<td>5.1</td>
<td>49,134</td>
<td>43,379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>San Juan, PR</td>
<td>1,045</td>
<td>23,484</td>
<td>498</td>
<td>11,464</td>
<td>47.7</td>
<td>48.8</td>
<td>22,473</td>
<td>23,020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Columbia River Ports, OR</td>
<td>2,578</td>
<td>99,772</td>
<td>154</td>
<td>7,473</td>
<td>6.0</td>
<td>7.5</td>
<td>38,701</td>
<td>48,529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Boston, MA</td>
<td>544</td>
<td>23,591</td>
<td>161</td>
<td>7,337</td>
<td>29.6</td>
<td>31.1</td>
<td>43,365</td>
<td>45,571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Jacksonville, FL</td>
<td>1,470</td>
<td>42,957</td>
<td>265</td>
<td>7,243</td>
<td>18.0</td>
<td>16.9</td>
<td>29,222</td>
<td>27,331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Dutch Harbor, AK</td>
<td>153</td>
<td>6,635</td>
<td>146</td>
<td>6,415</td>
<td>95.4</td>
<td>96.7</td>
<td>43,363</td>
<td>43,936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Wilmington, NC</td>
<td>562</td>
<td>22,322</td>
<td>102</td>
<td>5,477</td>
<td>18.1</td>
<td>24.5</td>
<td>39,718</td>
<td>53,698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Mobile, AL</td>
<td>885</td>
<td>47,279</td>
<td>50</td>
<td>2,110</td>
<td>5.6</td>
<td>4.5</td>
<td>53,423</td>
<td>42,195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kodiak, AK</td>
<td>95</td>
<td>2,024</td>
<td>95</td>
<td>2,024</td>
<td>100.0</td>
<td>100.0</td>
<td>21,310</td>
<td>21,310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Anchorage, AK</td>
<td>184</td>
<td>4,265</td>
<td>94</td>
<td>2,007</td>
<td>51.1</td>
<td>47.1</td>
<td>23,179</td>
<td>21,356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Tampa, FL</td>
<td>800</td>
<td>28,652</td>
<td>36</td>
<td>1,416</td>
<td>4.5</td>
<td>4.9</td>
<td>35,815</td>
<td>39,328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total top 5 ports</td>
<td></td>
<td>19,795</td>
<td>1,040,649</td>
<td>11,400</td>
<td>597,044</td>
<td>57.6</td>
<td>57.4</td>
<td>52,571</td>
<td>52,372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total top 10 ports</td>
<td></td>
<td>31,360</td>
<td>1,558,006</td>
<td>15,657</td>
<td>806,582</td>
<td>49.9</td>
<td>51.8</td>
<td>49,681</td>
<td>51,516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total top 25 ports</td>
<td></td>
<td>51,661</td>
<td>2,426,260</td>
<td>19,616</td>
<td>943,620</td>
<td>38.0</td>
<td>39.8</td>
<td>46,965</td>
<td>48,105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total all U.S. ports1</td>
<td></td>
<td>63,804</td>
<td>3,295,980</td>
<td>19,863</td>
<td>947,862</td>
<td>31.1</td>
<td>28.8</td>
<td>51,658</td>
<td>47,720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 5, percent of U.S. total</td>
<td></td>
<td>31.0</td>
<td>31.6</td>
<td>57.4</td>
<td>63.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 10, percent of U.S. total</td>
<td></td>
<td>49.2</td>
<td>47.3</td>
<td>78.8</td>
<td>85.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 25, percent of U.S. total</td>
<td></td>
<td>81.0</td>
<td>73.6</td>
<td>98.8</td>
<td>99.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY: dwt = deadweight tons.

NOTES: Data include oceangoing vessels 1,000 gross tons and above. Capacity equals dwt multiplied by calls. San Francisco includes Oakland, San Francisco, and other ports. Virginia ports include all Hampton Roads area ports (e.g., Norfolk, Newport News). Los Angeles and Long Beach are counted as one port in this table.

1 All container ports in all 50 states and Puerto Rico. The data in this table include only loaded containers in U.S. international maritime activity and cover U.S. imports, exports, and transshipments. Therefore, the trade levels will be greater than those reported from U.S. international trade statistics, which exclude transshipments. The data also exclude military shipments.

SOURCE: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, based on data from U.S. Department of Transportation, Maritime Administration, which are drawn from the Lloyd’s Maritime Intelligence Unit, Vessel Movement Data File, and are available at www.marad.dot.gov as of Mar. 20, 2009.

America’s Container Ports
total oceangoing vessel calls made by all vessel types at U.S. ports.10 The top five container ports handled over half (57 percent) of these container vessel calls and 63 percent of the container cargo capacity (table 4). Just 2 years before, in 2005, the top five ports handled 55 percent of the calls and 61 percent of the capacity.

Between 2002 and 2007, the number of vessel calls at U.S. container ports rose 16 percent, from about 17,100 to 19,800 calls. By contrast, total vessel calls grew by 13 percent, from 56,600 to 63,800 calls.

Measured by the average vessel size per call, U.S. maritime ports also handled larger container vessels than in the past. The average size (per call) of container vessels calling at U.S. ports was nearly 48,000 deadweight tons (dwt) in 2007 (table 4). This is a significant increase from 38,000 dwt in 2000. Increases in vessel calls and containership capacity affect port operation, port productivity, and infrastructure requirements needed to accommodate the mega post-Panamax vessels. They also affect environmental considerations and community-impact issues. (See Spotlight 3 on ports and environmental concerns.)

\section*{RANKING OF U.S. PORTS AMONG WORLD’S TOP PORTS}

In 2008, only 3 U.S. ports—Los Angeles, Long Beach, and New York/New Jersey—ranked among the world’s top 20 container ports when measured by TEUs, placing 16th, 17th, and 20th, respectively (table 5). Since 2000, these 3 U.S. ports have dropped in the ranking of the world’s top 20 ports as European and Southeast Asian ports handled

\begin{table}[h]
\centering
\caption{Top 20 World Container Ports: 2000, 2007, and 2008 (Thousands of loaded and unloaded TEUs)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\hline
2 & 1 & 1 & Singapore & Singapore & 17,040 & 27,932 & 29,918 \\
6 & 2 & 2 & Shanghai & China & 5,613 & 26,150 & 27,980 \\
1 & 3 & 3 & Hong Kong & China & 18,098 & 23,881 & 24,248 \\
11 & 4 & 4 & Shenzhen & China & 3,994 & 21,099 & 21,414 \\
3 & 5 & 5 & Busan & South Korea & 7,540 & 13,270 & 13,425 \\
13 & 7 & 6 & Dubai & United Arab Emirates & 3,059 & 10,653 & 11,828 \\
65 & 11 & 7 & Ningbo & China & 902 & 9,360 & 11,226 \\
38 & 12 & 8 & Guangzhou & China & 1,430 & 9,200 & 11,001 \\
5 & 6 & 9 & Rotterdam & Netherlands & 6,280 & 10,791 & 10,800 \\
24 & 10 & 10 & Qingdao & China & 2,120 & 9,462 & 10,320 \\
9 & 9 & 11 & Hamburg & Germany & 4,248 & 9,900 & 9,700 \\
4 & 8 & 12 & Kaohsiung & Taiwan & 7,426 & 10,257 & 9,677 \\
10 & 14 & 13 & Antwerp & Belgium & 4,082 & 8,177 & 8,664 \\
32 & 17 & 14 & Tianjin & China & 1,708 & 7,103 & 8,500 \\
12 & 16 & 15 & Port Klang & Malaysia & 3,207 & 7,120 & 7,970 \\
7 & 13 & 16 & Los Angeles & United States & 4,879 & 8,355 & 7,850 \\
8 & 15 & 17 & Long Beach & United States & 4,601 & 7,312 & 6,488 \\
113 & 18 & 18 & Tanjung Pelepas & Malaysia & 418 & 5,500 & 5,600 \\
17 & 20 & 19 & Bremen/Bremerhaven & Germany & 2,712 & 4,892 & 5,501 \\
14 & 19 & 20 & New York/New Jersey & United States & 3,050 & 5,400 & 5,265 \\
\hline
\end{tabular}
\end{table}

10 Of the remainder, 34 percent were by tankers, 17 percent by dry-bulk vessels, 10 percent by roll-on/roll-off ships, and 6 percent by general cargo ships.

more containerized cargo. During the same period, Chinese seaports became more dominant, and today 6 of the top 10 world ports are in China. Figure 12 shows the locations of the top 20 world container ports in 2008, the 2008 ranking by TEUs of cargo handled, and the cargo increases since 2000.

TRADING PARTNERS

While the United States exports and imports maritime goods from more than 175 countries, the vast majority of the trade is with relatively few countries. In 2007, nearly three-quarters (72 percent) of the container import TEUs were with 10 countries, and over half (55 percent) of the container export TEUs were with 10 countries. The top five overall U.S. containerized cargo trading partners in 2007 were all Asian countries: China (mainland), Japan, Hong Kong (China), South Korea, and Taiwan.

China (mainland) was the leading containerized merchandise trading partner, accounting for 47 percent of U.S. maritime import TEUs, up from 25 percent in 2000. China accounted for 18 percent of the export TEUs in 2007, down slightly from 2005 (figures 13 and 14).

Between 2000 and 2007, while China's share grew of total U.S. container trade, the other top five trading partners saw declines in their total maritime containerized cargo with the United States. Japan is now the second largest trading partner for U.S. oceanborne containerized exports, having been overtaken by China in 2003. In 2007, the U.S. maritime container imports from China alone were larger than those from more than 170 countries combined (i.e., those countries grouped into "other" (figure 13)).

U.S. imports and exports with major trading partners vary by types of goods, and this affects the types of vessels (for example, container, dry bulk, general cargo, or tanker), number of port calls, and the seaports the vessels use. For instance, while most U.S.-Canada maritime trade involves agricultural products, lumber, and petroleum products, most U.S.-Germany maritime trade involves manufactured products such as automobiles and machinery. In addition, U.S. maritime imports from Japan were valued at over $7,000 per ton, but U.S. exports to Japan were valued at $800 per ton,

11 For the analysis in this report, U.S. merchandise trade with mainland China and Hong Kong are considered separate. As used here, China refers to mainland China.
FIGURE 13

NOTE: For the analysis in this report, U.S. merchandise trade with mainland China and Hong Kong are considered separately. As used here, China refers to mainland China.

FIGURE 14

NOTE: For the analysis in this report, U.S. merchandise trade with mainland China and Hong Kong are considered separately. As used here, China refers to mainland China.

reflecting differences in the types of goods and the growth in high-value containerized imports to U.S. ports. Major U.S. maritime imports from Japan include passenger cars, car parts, and electronic equipment, and major U.S. maritime exports to Japan include agricultural products, industrial machinery, and chemicals.

ENTRIES OF OCEANBORNE CONTAINER UNITS

The container entries data from U.S. Customs and Border Protection (CBP) represented in this section and the next and in figures 15 and 16 are different from the TEU data presented earlier in the report. The CBP entries data count individual container units, while the TEU data refer to 20-foot equivalent units (that is, one 20-foot container equals one TEU, and one 40-foot container equals two TEUs). Because containers come in different lengths (for example, 20 feet, 40 feet, and 48 feet), the CBP figures on individual units differ from the TEU figures, which convert the tonnage of goods moved in the containers into TEUs.

The challenge of handling large volumes of containerized imports from U.S. trading partners can also be seen in the number of individual container entries processed by CBP. After a slight decline in the number of oceanborne containers entering the United States in the aftermath of the September 11, 2001, attacks, the nation’s seaports again began handling an increasing number of container units. In 2007, there were about 12 million oceanborne container entries into the United States, down slightly from 2006 but still double those of 2000 (figure 15). Maritime container entries peak in the summer months, when imported merchandise trade is delivered for the fall and holiday seasons (figure 16).

CONTAINER ENTRIES BY ALL MODES FROM ALL COUNTRIES

On a typical day in 2007, more than 70,000 individual container units entered the United States by ocean vessel, truck, and rail. In 2000, the figure was about 50,000 units per day.

Overall, there were over 25 million container entries into the United States by all modes of transportation in 2007, up 38 percent from nearly 19 million in 2000. In addition to the more than 11 million oceanborne containers used to bring goods into the United States, over 14 million containers entered the nation by truck and rail from Canada and Mexico in 2007 (table 6). The large number of containers crossing by land border into the United States by surface modes reflects the importance of U.S. trade with two of our top three trading partners. From 2000 to 2007, the number of truck, rail, and maritime container units (loaded and unloaded) crossing into the United States rose by 8 percent, 27 percent, and 94 percent, respectively.

<table>
<thead>
<tr>
<th>Year</th>
<th>Vessel containers full</th>
<th>Vessel containers empty</th>
<th>Truck containers full</th>
<th>Truck containers empty</th>
<th>Rail containers full</th>
<th>Rail containers empty</th>
<th>Overall total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5,353</td>
<td>635</td>
<td>7,685</td>
<td>2,748</td>
<td>1,485</td>
<td>685</td>
<td>18,587</td>
</tr>
<tr>
<td>2005</td>
<td>10,933</td>
<td>481</td>
<td>8,850</td>
<td>2,603</td>
<td>1,794</td>
<td>875</td>
<td>25,536</td>
</tr>
<tr>
<td>2006</td>
<td>11,238</td>
<td>480</td>
<td>8,721</td>
<td>2,689</td>
<td>1,792</td>
<td>935</td>
<td>25,855</td>
</tr>
<tr>
<td>2007</td>
<td>11,038</td>
<td>578</td>
<td>8,428</td>
<td>2,791</td>
<td>1,748</td>
<td>1,005</td>
<td>25,588</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
<td>7,680</td>
<td>2,947</td>
<td>1,645</td>
<td>1,029</td>
<td>NA</td>
</tr>
</tbody>
</table>

Modal shares (percent)

<table>
<thead>
<tr>
<th>Year</th>
<th>Vessel containers (percent)</th>
<th>Truck containers (percent)</th>
<th>Rail containers (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>28.8</td>
<td>41.3</td>
<td>14.8</td>
</tr>
<tr>
<td>2005</td>
<td>42.8</td>
<td>34.7</td>
<td>10.2</td>
</tr>
<tr>
<td>2006</td>
<td>43.5</td>
<td>33.7</td>
<td>10.4</td>
</tr>
<tr>
<td>2007</td>
<td>43.1</td>
<td>32.9</td>
<td>10.9</td>
</tr>
<tr>
<td>2008</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 6

Container Entries into the United States from All Countries and by All Modes: 2000–2008

(Thousands of entries)

KEY: NA = Not available.

FIGURE 15
(Millions of container units of all sizes)

FIGURE 16
(Thousands of container units of all sizes)

SPOTLIGHT 1: LANDSIDE ACCESS TO SEAPORTS

While container traffic at U.S. ports has increased steadily for many years, landside access to ports has not kept pace. Improving the intermodal connections for freight moving through ports remains a daunting task. Many cities grew around their ports, and thus many ports are now surrounded by dense urban environments. New rights-of-way for rail or truck traffic leaving port facilities are not available, restricting rail or road expansion.

Containerization has dramatically reduced the time needed to load and unload a vessel, but it has also contributed to landside congestion at ports. As containerships continue to increase in size, the number of containers they bring at one time also increases, shifting congestion from the waterways to the rail and truck infrastructure that serve the ports (USDOT FHWA 2008). The practice of double-stacking containers on railcars has been constrained in some locations because of low bridge and tunnel clearances. New facilities are needed to better enable the transfer of containers from ships to railcars and trucks. Finding locations for these large facilities in busy port and urban areas, however, is a problem (National Surface Transportation Policy and Revenue Study Commission 2007). While containerized international trade is predicted to double between 2001 and 2020, container capacity at U.S. ports has not grown in proportion to that of U.S. trading partners. By 2010, the container port in Singapore alone will have more container capacity than all the U.S. container ports combined (USDOT MARAD 2005). As of 2005, congestion resulting from landside access challenges was estimated to cost as much as $200 billion, wasting 2.3 billion gallons of fuel and 3.7 billion man-hours annually (USDOT MARAD 2005).

This section briefly presents the components of the intermodal freight system that operates at U.S. ports and discusses efforts at improving landside access and intermodal connectivity.

Intermodal Infrastructure at U.S. Ports

Railroads

America’s rail system consists of 162,000 miles of track that is privately owned and operated (AAR 2008). Following deregulation in 1980, the freight rail industry underwent years of downsizing, but it is now experiencing demand that is greater than capacity. Intermodal freight rail (the movement of containers or truck trailers from ports by rail) has increased substantially—from 3 million trailers and containers in 1980 to more than 12 million in 2007. Railroads have invested heavily in intermodal infrastructure to accommodate intermodal demand—for example, investing in intermodal freight cars, raising bridge and tunnel clearances to accommodate double-stacked containers, laying additional track, and implementing new communications systems (AAR 2008).

NHS Freight Connectors

Public roads that connect major intermodal freight terminals with the arterials and interstates of the National Highway System (NHS) are designated as NHS freight connectors. While these connectors are often short (often 2 miles long or less), they serve a vital purpose in America’s economy. A 2000 study of NHS freight connectors found that connectors to ports had “twice the percent of mileage with pavement deficiencies when compared to non-Interstate NHS routes” (USDOT FHWA 2000).

The Marine Transportation System

The Marine Transportation System (MTS) consists of all of the intermodal components that are part of the maritime domain, including ships, ports, inland waterways, intermodal rail and truck,
and MTS users (USDOT MARAD 2005). Although in recent years the demands placed on ports have been significant, some ports have had excess waterside capacity because problems with their landside access have discouraged use of them (NRC TRB 2003).

Congestion Mitigation and Access-Improvement Strategies

U.S. economic expansion and international trade are inextricably linked to the resolution of congestion and landside access challenges at U.S. ports. In recognition of this need, public and private MTS stakeholders have examined strategies for reducing landside congestion and improving access.

A comprehensive research project to find “low-cost and quickly implementable approaches” to reduce freight access and congestion challenges is currently under way through the National Cooperative Freight Research Program (NCFRP). The approaches reviewed for this study include radio frequency identification devices (RFID) on containers to allow operators to better position specific containers according to when they need to be transported, virtual container yards,12 congestion pricing, inland ports, extended business hours, truck-only lanes, and on-dock rail access (GAO 2008a).

Traffic bottlenecks on the landside transportation system serving the nation’s seaports affect seaports’ performance and the efficient movement of goods in and out of the ports.

In 2005, the most recent year for which data on both port freight activity and landside traffic delay are available, the top seaports ranked by port vessel calls were the ports of Los Angeles and Long Beach (table 7). The Los Angeles-Long Beach metropolitan area was also the top ranked urban area in 2005 in terms of annual traffic delay per traveler, averaging about 72 hours of delay.

Growing traffic delays on the access routes serving the nation’s largest seaports combined with the rising volumes of inbound and outbound cargo may result in increased congestion in the surrounding communities.

12 Virtual container yards are Web-based platforms where users can match empty containers to container needs at the dock rather than returning them to the terminal.
<table>
<thead>
<tr>
<th>Rank</th>
<th>Port</th>
<th>Calls</th>
<th>Capacity (dwt, millions)</th>
<th>Total short tons (millions)</th>
<th>Rank by tonnage</th>
<th>Hours of delay</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Houston, TX</td>
<td>6,195</td>
<td>267</td>
<td>216</td>
<td>2</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Los Angeles/Long Beach, CA</td>
<td>5,492</td>
<td>336</td>
<td>151</td>
<td>4</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>New York, NY</td>
<td>4,968</td>
<td>232</td>
<td>157</td>
<td>3</td>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>New Orleans, LA</td>
<td>4,884</td>
<td>240</td>
<td>76</td>
<td>9</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>San Francisco Bay Area ports, CA</td>
<td>3,945</td>
<td>213</td>
<td>48</td>
<td>17</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Philadelphia/Delaware River ports, PA</td>
<td>3,148</td>
<td>192</td>
<td>111</td>
<td>5</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Virginia ports, VA</td>
<td>2,775</td>
<td>138</td>
<td>56</td>
<td>15</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Savannah, GA</td>
<td>2,615</td>
<td>122</td>
<td>36</td>
<td>23</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>Columbia River ports, OR</td>
<td>2,578</td>
<td>100</td>
<td>56</td>
<td>14</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Charleston, SC</td>
<td>2,160</td>
<td>97</td>
<td>23</td>
<td>33</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>Baltimore, MD</td>
<td>1,833</td>
<td>63</td>
<td>41</td>
<td>20</td>
<td>44</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Port Everglades, FL</td>
<td>1,472</td>
<td>52</td>
<td>24</td>
<td>32</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>Jacksonville, FL</td>
<td>1,470</td>
<td>43</td>
<td>21</td>
<td>35</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>Port Arthur, TX</td>
<td>1,418</td>
<td>95</td>
<td>29</td>
<td>27</td>
<td>11</td>
<td>77</td>
</tr>
<tr>
<td>15</td>
<td>Tacoma, WA</td>
<td>1,241</td>
<td>63</td>
<td>27</td>
<td>29</td>
<td>45</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>Texas City, TX</td>
<td>1,200</td>
<td>70</td>
<td>57</td>
<td>13</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>Corpus Christi, TX</td>
<td>1,080</td>
<td>72</td>
<td>81</td>
<td>7</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>18</td>
<td>San Juan, PR</td>
<td>1,045</td>
<td>23</td>
<td>12</td>
<td>45</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>19</td>
<td>Seattle, WA</td>
<td>1,042</td>
<td>60</td>
<td>28</td>
<td>28</td>
<td>45</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>Miami, FL</td>
<td>927</td>
<td>31</td>
<td>7</td>
<td>56</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>Mobile, AL</td>
<td>885</td>
<td>47</td>
<td>64</td>
<td>10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>22</td>
<td>Freeport, TX</td>
<td>806</td>
<td>40</td>
<td>30</td>
<td>26</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>23</td>
<td>Tampa, FL</td>
<td>800</td>
<td>29</td>
<td>47</td>
<td>18</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>24</td>
<td>Lake Charles, LA</td>
<td>796</td>
<td>56</td>
<td>64</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>25</td>
<td>Honolulu, HI</td>
<td>648</td>
<td>21</td>
<td>18</td>
<td>37</td>
<td>24</td>
<td>51</td>
</tr>
</tbody>
</table>

KEY: dwt = deadweight tons. NA = Not available in the Texas Transportation Institute 2007 Annual Urban Mobility Study.

1 The most recent year for which data on landside annual traffic delay are available is 2005. Annual delay per traveler equals extra travel time for peak-period travel during the year divided by the number of travelers who begin a trip during the peak period (6 to 9 a.m. and 4 to 7 p.m.). These peak-period travel times are compared with times for free-flow speeds (60 mph on freeways and 35 mph on principal arterials).

2 San Francisco Bay Area ports: Oakland, Redwood City, Richmond, San Francisco, and Stockton.

4 Virginia ports: Norfolk, Richmond, and Newport News.

SPOTLIGHT 2: MARITIME SECURITY

Securing maritime cargo globally throughout the entire supply chain remains a security challenge for shipping lines, vessel owners, and shippers. In 2007 and 2008, the issue of piracy and hijacking of ocean vessels on the high seas became a major concern, particularly for vessels passing through the Gulf of Aden on the east coast of Africa. In 2008, more than 120 pirate attacks occurred in the Gulf of Aden (New York Times 2009). On April 8, 2009, a U.S.-flagged container vessel with 20 American sailors was hijacked by pirates off the coast of Somalia. The vessel’s crew later regained control of the ship. The International Maritime Bureau estimates that between January and April 2009, there were 41 attempted pirate attacks and 6 hijackings in Gulf of Aden (ICC Commercial Crime Services 2009). Preventing such attacks in the vast open oceans is an enormous challenge for the international maritime community.

The security of U.S. ports and the goods that pass through them depends on numerous governmental actors, foreign and domestic, and private-sector entities. Following the terrorist attacks of September 11, 2001, attention to maritime trade security increased substantially. Legislation and related government strategies have proliferated, but significant concerns remain about the overall security of maritime trade.

Several long-term trends in maritime trade have made it more difficult for U.S. authorities to secure maritime cargo. In the second half of the 20th century, globalization transformed the nation’s economy. The production of many goods moved to low-cost locations overseas, necessitating an increase in maritime trade. Containerization, the use of large aluminum or steel containers to ship freight, aided globalization by reducing the amount of time and labor needed to ship goods and by reducing cargo damage (OECD 2003). The trend toward just-in-time (JIT) production and inventory management, in which firms seek to cut costs and improve efficiencies through a build-to-order strategy that dramatically reduces their inventories, has provided many benefits to shippers, but it has also presented complex security challenges.\(^\text{13}\)

Because containers make up the largest percentage of inbound maritime cargo traffic, they have been the focus of security efforts. Containers obscure cargo from plain sight. Because of the high volume of imported containers handled at U.S. seaports, it is a challenge to attempt to inspect every container without severely interrupting the flow of trade. Containers, and the items they transport, often take circuitous routes from origin to destination, not only passing port to port but traveling inland via rail or truck. An average container makes 17 stops between its origin and final destination. Tampering with containers—inserting illicit material—is not difficult at most points in the supply chain (Cohen 2006).

U.S. authorities have taken a multilayered approach that attempts to provide maritime freight security throughout the international supply chain. This section reviews the current maritime security system and the difficult challenges the United States faces in providing a completely secured maritime transportation system.

Post-9/11 Security Improvements

The September 11, 2001, terrorist attacks dramatically increased public-sector attention to maritime transportation system security. In fiscal year 2001, federal funding for port security was approximately $259 million. By fiscal year 2005, it had risen to $1.6 billion, a 700 percent increase (USDHS CBP 2006).

\(^{13}\) JIT involves keeping materials on hand for only a few days or sometimes only a few hours of operation.
Table 8 summarizes some of the significant maritime security legislation in the post-9/11 period. The Maritime Transportation Security Act of 2002 (MTSA) and the Security and Accountability for Every Port Act of 2006 (SAFE Port Act) are among the most important pieces of legislation. Out of MTSA, the National Maritime Transportation Security Plan was created to provide a framework for deterrence of security incidents involving maritime transportation infrastructure and for response to any that may arise. This plan requires two levels of security planning at the local level, the Area Maritime Security Plans (AMSP) and the Vessel and Facility Security Plans (VSPs and FSPs, respectively). AMSPs are developed by the local U.S. Coast Guard sector commander/federal maritime security coordinator, with input from the area maritime security committees, which include government officials and other key stakeholders. Facility owners or vessel owners or operators create VSPs and FSPs. There are eight additional mode-specific security plans that are subsidiaries of the National Maritime Transportation Security Plan.

Under the SAFE Port Act, the Draft Strategy to Enhance International Supply Chain Security was produced in July 2007. The U.S. Department of Homeland Security (USDHS) is the lead agency in implementing this strategy. It provides an overarching framework to facilitate the secure flow of international cargo, provides plans for specific segments of the international supply chain, and focuses on guidance for the resumption of operations following an all hazards incident. The strategy aims to integrate the many plans and initiatives currently in place in order to secure the supply chain (USDHS 2007).

TABLE 8
Post-9/11 Legislation Relevant to Maritime Transportation System Security

<table>
<thead>
<tr>
<th>Legislation</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation and Transportation Security Act (2001)</td>
<td>Gave the federal government broad authority in transportation security for all modes.</td>
</tr>
<tr>
<td>Maritime Transportation Security Act (2002)</td>
<td>Required the U.S. Department of Homeland Security to create the National Maritime Security Plan. This plan outlines the coordinated action and incident-response plans between federal, state, and local governments to respond to security incidents involving maritime assets and infrastructure. The act also required, among other things, the establishment of transportation worker identification cards, maritime safety and security teams, port security grants, and enhancements to maritime intelligence and matters dealing with foreign ports and international cooperation.</td>
</tr>
<tr>
<td>Critical Infrastructure Information Act (2002)</td>
<td>Created the framework that allows private-sector entities and others to voluntarily submit information regarding critical infrastructure/key resources in their possession to the U.S. Department of Homeland Security, with the assurance that this information will not be publicly available.</td>
</tr>
<tr>
<td>The Intelligence Reform and Terrorism Prevention Act (2004)</td>
<td>Required the development of the National Strategy for Transportation Security. This strategy is a classified document, but it is known that this document provides the framework for the federal government, working with state, local, and tribal governments and private industry, to secure the national transportation system and to prepare to respond to terrorist threats or attacks to transportation infrastructure.</td>
</tr>
<tr>
<td>Security and Accountability for Every Port Act (2006)</td>
<td>Required the secretary of homeland security, in coordination with relevant federal, state, local, and tribal government authorities and the private sector and international community, to develop and implement a strategic plan to “enhance the security of the international supply chain.”</td>
</tr>
</tbody>
</table>

14 A final version of this strategy is scheduled to be completed by October 2009.

15 An all hazards incident refers to any incident, terrorist or natural disaster, that could affect the maritime transportation system.
USDHS and its partners have programs in place to secure maritime cargo throughout the chain of custody, from the origination of the cargo through its arrival at a final destination (Frittelli 2002). Table 9 provides an overview of federal programs to secure the various points in the maritime supply chain. Each program in this table has a unique responsibility in maritime cargo security and takes a specific approach to it.

Customs-Trade Partnership Against Terrorism (C-TPAT) is a voluntary public-private partnership program in which the private owners of supply chain infrastructure and cargo work with U.S. Customs and Border Protection (CBP) to improve the security of the international supply chain. C-TPAT participants are asked to ensure that their own security plans and practices are in compliance with C-TPAT security criteria and coordinated with their business partners throughout the supply chain. CBP validates and regularly revalidates an entity’s participation in C-TPAT (USDHS 2007). As of March 2008, C-TPAT had more than 8,200 certified members. C-TPAT members account for 80 percent of the value of goods imported into the United States (USDHS CBP 2008).

The Secure Freight Initiative (SFI), a joint program of USDHS and the U.S. Department of Energy (USDOE), is implemented by CBP and USDOE. SFI began as a pilot program in which seven overseas ports participated in scanning all U.S.-bound containers for nuclear or radiological materials. The SFI pilot phase was intended to help authorities prepare for the scanning of U.S.-bound containers that will be required in the future (GAO 2008b). In the pilot phase, however, 100 percent of container cargo was scanned at just three of the seven participating ports: Port Qasim, Karachi, Pakistan; Puerto Cortes, Honduras; and Southampton, United Kingdom (USDHS CBP 2007a).

SFI builds on the Container Security Initiative (CSI), a CBP program, which works with foreign governments and cargo and facility owners to target and inspect high-risk cargo at its port of origin. SFI also builds on the USDOE’s Megaports Initiative, which works with partner governments to scan containers for nuclear or radioactive materials (USDHS CBP 2007b).

In addition to these programs, the Transportation Security Administration (TSA) began distributing individual port security grants in 2002. By fiscal year 2005, grants awarded totaled $632 million. Grants have aided ports in conducting security assessments, enhancing facility or operational security, and implementing cutting-edge technology (Haveman et al. 2006).
SPOTLIGHT 3: PORTS AND ENVIRONMENTAL CONCERNS

Oceanborne container activities at U.S. seaports, while essential for trade and commerce, can affect water quality, air quality, and land-use patterns. The complex interconnections between port activities and environmental quality have implications for the nation’s coastal, ocean, and freshwater resources. They also affect transportation demands and traffic congestion. U.S. ports have recently renewed their attention to environmental concerns. In particular, port and federal agencies with responsibility for marine environmental quality have focused on the following issues:

- **Water quality.** The greater use of larger shipping vessels and increased portside traffic escalate the risk both of introducing nonindigenous aquatic species through ballast water\(^{16}\) and of leaking of toxic materials into marine ecosystems. They also increase demand for dredging of sediments in ports and harbors.

- **Air quality.** Increased container activity and the accompanying growth in truck and cargo-handling equipment operating at U.S. ports generate additional air pollutants, including carbon monoxide (CO), ozone (O\(_3\)), nitrogen oxide (NO\(_2\)), and sulfur dioxide (SO\(_2\)). Port activities can also result in noise pollution.

- **Land-use patterns.** Increased containership traffic and activity at ports adds to traffic congestion around the ports, affecting landside access. Because port traffic intermingles with residential and commercial traffic in the adjacent land areas, growth in container traffic results in increasing congestion for both freight carriers and private citizens.

U.S. ports are also considering the potential environmental challenges implicit in climate change, including costs of improved infrastructure to protect harbors from rising sea levels, increased port maintenance costs, and increased operations costs due to delays in shipping activities (EPA 2008b).

To deal with these challenges, the U.S. Environmental Protection Agency (EPA) has introduced new environmental and sustainability initiatives. EPA’s initiative to reduce diesel emissions at U.S. ports, called Clean Ports USA, suggests a variety of operational and technological ideas that ports can adapt to their individual needs, including truck idle reduction, the use of cleaner fuel, and replacement of older equipment (EPA 2005). EPA has also developed an overarching strategy for sustainable ports that provides measures that ports can implement, largely voluntarily, in partnership with the agency. Focus areas include clean air and affordable energy, clean and safe water, healthy communities and ecosystems, the global environment, ports communication, and enforcement (EPA 2007).

By 2008, more than 18 U.S. ports were developing and using Environmental Management Systems (EMS), which integrate environmental considerations in both day-to-day operational decisions and long-term planning (EPA 2008a). Many U.S. ports have also launched their own “green” initiatives. For example, the ports of Los Angeles and Long Beach have received national attention for environmental efforts focused on air quality. With help from California state and local air-quality agencies, for example, they are using cleaner fuels and replacing older trucks with hybrid vehicles, including the world’s first hybrid tugboat (Murr 2008).

\(^{16}\) Ballast water is taken on empty ships to stabilize the ship. When a ship is loaded with cargo, the ballast water is pumped out, introducing aquatic organisms from its origin port at its destination.
References

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>Association of American Railroads</td>
</tr>
<tr>
<td>ATA</td>
<td>American Trucking Association</td>
</tr>
<tr>
<td>BEA</td>
<td>Bureau of Economic Analysis</td>
</tr>
<tr>
<td>BTS</td>
<td>Bureau of Transportation Statistics</td>
</tr>
<tr>
<td>CB</td>
<td>U.S. Census Bureau</td>
</tr>
<tr>
<td>CBP</td>
<td>U.S. Customs and Border Protection</td>
</tr>
<tr>
<td>dwt</td>
<td>deadweight tons</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FRA</td>
<td>Federal Railroad Administration</td>
</tr>
<tr>
<td>GAO</td>
<td>U.S. Government Accountability Office</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>ICC</td>
<td>International Chamber of Commerce</td>
</tr>
<tr>
<td>MARAD</td>
<td>Maritime Administration</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>RITA</td>
<td>Research and Innovative Technology Administration</td>
</tr>
<tr>
<td>TEU</td>
<td>twenty-foot equivalent container unit</td>
</tr>
<tr>
<td>TSA</td>
<td>Transportation Security Administration</td>
</tr>
<tr>
<td>TTI</td>
<td>Texas Transportation Institute</td>
</tr>
<tr>
<td>USCG</td>
<td>U.S. Coast Guard</td>
</tr>
<tr>
<td>USDHS</td>
<td>U.S. Department of Homeland Security</td>
</tr>
<tr>
<td>USDOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>USDOT</td>
<td>U.S. Department of Transportation</td>
</tr>
</tbody>
</table>
Glossary

Definitions in this glossary are adapted from the U.S. Department of Transportation, Research and Innovative Technologies Administration, Bureau of Transportation Statistics, available at www.bts.gov/dictionary.

All hazards incident. Refers to any incident, the result of terrorism or a natural disaster, that could affect the maritime transportation system.

Ballast water. Fresh or salt water, sometimes containing sediments, held in tanks and cargo holds of ships to increase stability and maneuverability during transit.

Break-bulk. Packages of maritime cargo that are handled individually, palletized, or unitized for purposes of transportation as opposed to bulk and containerized freight.

Bulk carrier. A ship with specialized holds for carrying dry or liquid commodities, such as oil, grain, ore, and coal, in unpackaged bulk form. Bulk carriers may be designed to carry a single bulk product (crude oil tanker) or accommodate several bulk product types (ore/bulk/oil carrier) on the same voyage or on a subsequent voyage after holds are cleaned.

Chained dollars. A measure used to express real prices, defined as prices that are adjusted to remove the effect of changes in the purchasing power of the dollar. Real prices usually reflect buying power relative to a reference year. The “chained-dollar” measure is based on the average weights of goods and services in successive pairs of years. It is “chained” because the second year in each pair, with its weights, becomes the first year of the next pair. Before 1996, real prices were expressed in constant dollars, a weighted measure of goods and services in a single year. See also current dollars.

Class I freight railroad. Defined by the American Association of Railroads each year based on annual operating revenue. For 2008, the threshold for Class I railroads was revenues exceeding $360 million. A railroad is dropped from the Class I list if it fails to meet the annual revenue threshold for three consecutive years.

Container. A large standard-size metal box into which cargo is packed for shipment aboard specially configured oceangoing containerships. It is designed to be moved with common handling equipment to enable high-speed intermodal transfers in economically large units between ships, railcars, truck chassis, and barges using a minimum of labor. Therefore, the container rather than the cargo in it serves as the transfer unit.

Containerization. A system of intermodal freight transportation that uses standard containers that can be loaded onto vessels, railcars, and trucks. It involves the stowage of general or special cargo in a container for transport in the various modes.

Containership. A cargo vessel designed and constructed to transport, within specifically designed cells, portable tanks and freight containers, which are lifted on and off with their contents intact.

Containerized cargo: Cargo that is practical to transport in a container and results in a more economical shipment than could be achieved by shipping the cargo in some other form of unitization (e.g., break-bulk).

Container terminal. An area designated for the stowage of cargo in containers. It is usually accessible by truck, railroad, and marine transportation. At a container terminal, containers are picked up, dropped off, maintained, and housed.

Container throughput. A measure of the number of containers handled over a period of time. It is a standard measure for the productivity of a seaport. Container throughput is measured by twenty-foot equivalent units (TEU).

Current dollars. Dollar value of a good or service in terms of prices current at the time the good or service is sold. See also chained dollars.

Customs-Trade Partnership Against Terrorism (C-TPAT). A voluntary public-private partnership program in which the private owners of supply chain infrastructure and cargo work with U.S. Customs and Border Protection to improve the security of the international supply chain. See www.cbp.gov for details.

Deadweight tons (dwt). The total weight of a ship’s load, including cargo, fuel, and crew. The deadweight tonnage of a ship is the difference
between its weight when completely empty and its weight when fully loaded.

Gross domestic product (GDP). The total value of goods and services produced by labor and property located in the United States. As long as the labor and property are located in the United States, the supplier (the workers and, for property, the owners) may be either U.S. residents or residents of foreign countries.

Highway-rail crossing. A location where one or more railroad tracks intersect a public or private thoroughfare, a sidewalk, or a pathway.

Intermodal container. A freight container designed to permit it to be used interchangeably in two or more modes of transport.

Intermodal. Used to denote movements of cargo containers interchangeably between transport modes—i.e., motor, water, and air carriers—and where the equipment is compatible within the multiple systems.

Just in time (JIT). A method of inventory control in which warehousing is minimal or nonexistent. A container is the movable warehouse and must arrive "just in time," not too early or too late.

Marine terminal. A designated area of a port used for the transmission, care, and convenience of cargo and/or passengers in the interchange of them between land and water carriers or between two water carriers. It includes wharves, warehouses, covered and/or open storage spaces, cold storage plants, grain elevators and/or bulk cargo loading and/or unloading structures, landings, and receiving stations.

Marine Transportation System (MTS). Consists of all the intermodal components that are part of the maritime domain, including ships, ports, inland waterways, intermodal rail and truck, and other users of the maritime system.

Merchandise trade exports. Merchandise transported out of the United States to foreign countries whether such merchandise is exported from within the U.S. Customs Service territory, from a U.S. Customs bonded warehouse, or from a U.S. Foreign Trade Zone. (Foreign Trade Zones are areas, operated as public utilities, under the control of U.S. Customs with facilities for handling, storing, manipulating, manufacturing, and exhibiting goods.)

Merchandise trade imports. Commodities of foreign origin entering the United States, as well as goods of domestic origin returned to the United States with no change in condition or after having been processed and/or assembled in other countries. Puerto Rico is a customs district within the U.S. Customs territory, and its trade with foreign countries is included in U.S. import statistics. U.S. import statistics also include merchandise trade between the U.S. Virgin Islands and foreign countries even though the islands are not officially a part of the U.S. Customs territory.

Port. A harbor area in which marine terminal facilities for transferring cargo between ships and land transportation are located.

Real gross domestic product (GDP). The real counterpart to current/nominal GDP, obtained by valuing output in a given year at prices from another year, called the base year. It reflects correction for inflation and changes in the price of goods and services.

Roll-on/roll-off vessel. Ships that are designed to carry wheeled containers or other wheeled cargo and that use the roll-on/roll-off method for loading and unloading.

Tanker. An oceangoing ship designed to haul liquid bulk cargo in world trade.

Twenty-foot equivalent unit (TEU). The standard unit for measuring the volume of containers that seaports handle. Standard container sizes are 20 feet, 40 feet, and 48 feet long.

Virtual container yard. Virtual container yards are Web-based platforms where users can match empty containers to container needs at the dock rather than returning them to the terminal.
Other recent BTS maritime-related reports

Maritime Trade & Transportation 2007 provides an update on the major marine infrastructure, maritime-related transportation services, domestic and international freight and passenger trade, the economic impact of the Maritime Transportation System, safety and environment, national security, and shipbuilding. It also presents information about the St. Lawrence Seaway and the U.S. Coast Guard (92 pages, 2008).

America’s Container Ports: Delivering the Goods 2007 examines trends in U.S. containerized cargo and freight activity at major U.S. container ports. It reviews the direction of container traffic, port concentration, regional port trends, vessel calls and capacity, trading patterns, and container entries by all modes (11 pages, 2007).