COMPLETE INDEX (for Vols. 1–7)

A

Accessibility
and road construction, Vol. 5(1):26
business productivity, Vol. 1(3):69–76
definition of, Vol. 4(2/3):16
demarcation area, Vol. 4(2/3):37
European context, Vol. 4(2/3):38–40
indicators
travel-cost approach, Vol. 4(2/3):33
utility-based surplus approach, Vol. 4(2/3):35
and labor markets, Vol. 4(2/3):54–57, 63–64
measurement of attraction masses, Vol. 4(2/3):37
measurement of spatial separation, Vol. 4(2/3):36–37
path-based accessibility, Vol. 4(2/3):79–90
unimodality and multimodality, Vol. 4(2/3):37

Accidents. See also Crashes, Safety
air transportation, Vol. 2(1):79, 85
costs, Vol. 4(1):87–90, 99–100
free incidents, travel time, Vol. 2(2):123–131
hazardous materials shipments by rail, Vol. 3(1):81–92
high-risk sites, Vol. 1(1):75–91
increased speed limits, Vol. 4(1):1–26
traffic, Vol. 7(2/3):13–26

Advanced Traveler Information Systems, Vol. 7(2/3):53–70
AFV. See Alternative fuel vehicles

Age. See also Demographic factors
as a determinant of truck accidents, Vol. 3(1):69–73
commuting, Vol. 2(1):104
in relation to highway safety, Vol. 6(2/3):51–65
Agglomeration effects (accessibility modeling), Vol. 4(2/3):37–38
Aggregation/disaggregation of data
freight demand and mode choice, Vol. 2(2):149–58
investment, macroeconomic analyses, Vol. 1(3):65–79
motor vehicle emissions, Vol. 3(2):25
motor vehicle license fees, Vol. 2(2):139
travel demand, country comparisons, Vol. 3(3):1–31
truck trips, statewide, Vol. 3(1):53
urban passenger transport, Vol. 1(1):44
value of time data, Vol. 5(2/3):57–72

AIC. See Akaike’s Information Criterion
Air pollution, Vol. 3(2):1–102
air quality assessment, Vol. 3(2):85–101
air quality planning, local roads, Vol. 6(1):59–69
appearance transportation, Vol. 2(1):79–80, 85–86
analysis of covariance model, Vol. 3(2):49–64
chase car data, Vol. 3(2):15–28
costs from highway transportation, Vol. 4(1):91–92, 100
mobile source emissions forecasting, Vol. 6(1):17–32
trips, relationship to value of time data, Vol. 5(2/3):2–72
and unregistered motor vehicles, Vol. 7(2/3):1–12
airline
flight delay and cancellation analysis, Vol. 7(1):74–84
low-cost carriers, Vol. 7(1):88–101
regional carriers, Vol. 7(1):88–101
traffic, Vol. 7(1):69–85
networks, Vol. 7(1):87–101
Air Travel Price Index, Vol. 7(2/3):41–52
econometric forecasts, Vol. 7(1):7–21
infrastructure needs, Vol. 2(1):78–79, 84–85
international freight, Vol. 7(2/3):93–97
policy formation, Vol. 2(1):74–76, 81–82
productivity analysis, Vol. 2(1):77–78, 83–84
safety, Vol. 2(1):79, 85
use in cost analysis, Vol. 2(1):77–78, 83–84
use in demand forecasting, Vol. 2(1):76–77, 83–84
use in environmental analysis, Vol. 2(1):79–80, 85–86
Akaike’s Information Criterion (AIC), Vol. 7(1):3
Alabama
time-use behavior model, Vol. 5(1):39
costs flows, Vol. 1(1):69, 72
Alternative and replacement fuels, Vol. 3(2):50–61
Alternative fuel vehicles (AFV) emissions, Vol. 3(2):50, 57–61
urban transportation, Vol. 3(1):35
American Travel Survey, Vol. 5(2/3):84
Analysis of covariance (ANCOVA)
motor vehicle emissions, Vol. 3(2):49–64
Analysis of variance (ANOVA), Vol. 2(2):49–63
motor vehicle emissions, Vol. 3(2):24
roadway inventory data collection, Vol. 3(3):36–42
Atlanta, Georgia, parking, Vol. 2(1):93–107
ARIMA. See Box-Jenkins ARIMA time series
Arizona
time-use behavior model, Vol. 5(1):39
costs flows, Vol. 1(1):69, 72
Arkansas
time-use behavior model, Vol. 5(1):39
costs flows, Vol. 1(1):69, 72
Australia
- crash statistics, Vol. 2(2):159–166
- freight travel time, Vol. 3(3):83–89
- modeling transportation in urban areas, Vol. 3(1):31–52
- travel demand, Vol. 3(3):1–31
Austria
- crash statistics, Vol. 2(2):159–166
Automatic vehicle identification, Vol. 7(2/3):53–70
Aviation. See Air transportation

B
Bayesian
- generalized cross validation, Vol. 7(2/3):56–70
- natural cubic splines, Vol. 7(2/3):54–70
- network model, Vol. 7(2/3):13–26
- smoothing splines, Vol. 7(2/3):53–70
Bayesian Information Criterion (BIC), Vol. 7(1):3
Belgium
- crash statistics, Vol. 2(2):159–166
- travel demand, Vol. 3(3):7
BIC. See Bayesian Information Criterion
Border crossings
- economics, Vol. 7(1):7–21
- forecast accuracy, Vol. 7(1):7–21
- international freight gateways, Vol. 7(2/3):93–97
Bootstrap methods
- validation of motor vehicle emissions, Vol. 3(2):29–36
Box-Jenkins ARIMA time series, Vol. 4(1):13–15
Bridge improvements, Vol. 1(3):65–78
Bridges
- traffic
- counting, Vol. 6(1):61
- international crossings, Vol. 7(1):7–21
Buses, Vol. 1(2):4, 7, 11; Vol. 4(2/3):79–90. See also Public transportation
- noise pollution, Vol. 1(3):10–11

C
California
- commodity inflows, Vol. 7(1):36
- highway crashes and older drivers, Vol. 6(2/3):51–65
Port of Los Angeles, international freight, Vol. 7(2/3):93–97
San Diego, increased roadway capacity, Vol. 5(1):27
San Francisco, increased roadway capacity, Vol. 5(1):27
San Francisco Bay Area Rapid Transit
- customer satisfaction among riders, Vol. 4(2/3):71
- unregistration rates of on-road vehicles, Vol. 7(2/3):1–12
Canada
- crash statistics, Vol. 2(2):159–166
Capital investment in highways
- environmental regulation and, Vol. 2(1):45–60
Carbon dioxide
- air transportation, Vol. 2(1):80
Carbon monoxide
Cargo
- containerized, Vol. 6(1):71–86
- international, U.S./Mexico, Vol. 7(1):7–21
- train waybill data models and statistics, Vol. 4(1):75–79
Cars. See Motor vehicles, Passenger cars
CFS. See Commodity Flow Survey
Chase car data
- measuring vehicle emissions, Vol. 3(2):15–28
- potential inaccuracy, Vol. 3(2):17–18
China, containerized cargo, Vol. 6(1):71–86
Clean Air Act emissions standards, Vol. 3(2):2–3, 5
Climate change
- air transportation, Vol. 2(1):79–80
- motor vehicle emissions, Vol. 3(2):v
Cluster analysis, land-use and transportation sketch planning, Vol. 4(1):39–49
Colorado
- truck flows, Vol. 1(1):69, 72
Commodities
 Vol. 3(1):53–66
- transportation as, Vol. 3(1):15–29

2
demographics of, Vol. 2(1):93–107
transit strikes, Vol. 1(3):43–51
time, costs of freeway incidents, Vol. 2(2):123–130
survey, Northridge, California, earthquake, Vol. 1(2):
13–15, 31–33

Commuting
impact of Northridge earthquake, Vol. 1(2):1–4, 8–19,
31–35, 50–51, 59–61
time spent, Vol. 5(1):25–45

Congestion. See Traffic congestion
Connecticut
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72

Containerized cargo, Vol. 6(1):71–86

Content analysis, Vol. 1(2):65–73
Contextual stated preference methods, freight travel time
and reliability, Vol. 3(3):83–89

Correlation
multiple serial correlation, transit investment, Vol.
2(2):113–121

Costs/cost-benefit analyses
accidents, Vol. 4(1):87–90
air transport statistics, Vol. 2(1):77–78, 83–84
disabled persons, rural vouchers, Vol. 2(1):68
environmental costs
air pollution, Vol. 4(1):91–92
impact on road construction, Vol. 2(1):45–60
freeway incidents, travel time, Vol. 2(2):123–131
freight travel time, Vol. 3(3):83–89
highway construction, Vol. 2(1):45–60
impact of Northridge earthquake on trucking, Vol.
1(2):37–48
motor vehicle license fees, Vol. 2(2):133–147
Northridge earthquake, Vol. 1(2):15–18, 19, 21, 37,
40, 44–46
parking pricing, Vol. 2(1):100–106
public transit, Vol. 2(2):113–121
social costs of motor vehicle use, Vol. 1(1):15–42
transit, multiple serial correlation, Vol. 2(2):113–121
vehicle operating costs, 86–87

Covariance matrix, and travel time budgets, Vol. 5(1):35

Crashes, Vol. 2(1):19–43. See also Accidents, Safety
annual mileage as determinant of truck accidents, Vol.
3(1):69, 71, 74
and demographics, Vol. 7(2/3):13–26
fatalities, Vol. 2(2):159–166; Vol. 7(2/3):13–26
economic costs of motor vehicle crashes, Vol. 2(1):23–32,
36–43
effect of alcohol, Vol. 6(2/3):51–65
51; Vol. 6(2/3):51–65

international statistics, Vol. 2(2):159–166
at intersections, Vol. 7(2/3):27–39
older drivers, Vol. 6(2/3):51–65
road characteristics in, Vol. 7(2/3):13–26
and speed, Vol. 7(2/3):13–26

CTPP. See Census Transportation Planning Package
Cuidad Juárez, Mexico, border economics, Vol. 7(1):7–21

D
Dallas–Fort Worth, TX, Vol. 6(1):17–32
Delaware, truck flows, Vol. 1(1):69, 71, 72
Demand
derived, Vol. 5(1):26
forecasting using air transport statistics, Vol. 2(1):76–
77, 82–83

Demographic factors. See also Age
ascent, Vol. 7(2/3):13–26
determinants of trucking safety, Vol. 3(1):69–79
disabled persons, rural vouchers, Vol. 2(1):61–70
employee demographics in relation to parking, Vol.
2(1):98, 104–105
equity in motor vehicle license fees, Vol. 2(2):133–147
motor vehicle ownership, Vol. 2(1):6–16
race as determinant of truck crashes, Vol. 3(1):69, 71–72
Denmark, crash statistics, Vol. 2(2):159–166
DIRECTIONS Travel Intelligence System, Vol. 5(2/3):85, 89
Disabled persons
disabled persons, rural vouchers, Vol. 2(1):61–69

Disaggregation. See Aggregation/disaggregation
Disasters
planning by trucking companies, Vol. 1(2):37–48
District of Columbia. See Washington, DC

Driver behavior and traffic flow, Vol. 5(1):3, 23
Driver experience as determinant of truck accidents, Vol.
3(1):69, 71, 73–74

E
Econometric analyses, Vol. 3(1):1–14
airline networks, Vol. 7(1):87–101
forecasting, Vol. 7(1):7–21, 87–101
highway safety and older drivers, Vol. 6(2/3):51–65
modeling impacts of bypasses on communities, Vol.
5(1):59
regional, Vol. 7(1):7–21
Economic factors. See also Capital investment in highways,
Costs/cost-benefit analysis, Demand, Employment,
Gross Domestic Product
costs of traffic congestion, Vol. 2(2):123–130
efficiency of European railways, Vol. 3(3):61–67
equity of vehicle license fees by household location, Vol. 2(2):140–143
equity of vehicle license fees by income, Vol. 2(2):135–140
impacts of bypasses on communities, Vol. 5(1):57–69
induced travel demand, Vol. 3(1):1–14
macroeconomic analysis of transportation investments, Vol. 1(3):43–51
motor vehicles
license fees, Vol. 2(2):133–147
social costs of owning, Vol. 1(1):15–42
price elasticities, Vol. 7(1):40
transportation in the Canadian economy, Vol. 6(2/3):29–49
Transportation Output Index, Vol. 6(2/3):1–27
Transportation Satellite Accounts, Vol. 5(2/3):1–18
urban transportation, Vol. 3(1):31–52
value of travel time, Vol. 2(2):123–130
Efficiency measures, European railways, Vol. 3(3):61–68
Elasticity
demand on tolled motorways, Vol. 6(2/3):91–108
parking prices, Vol. 2(1):1–3
price
airline, Vol. 7(1):96
public transportation in Spain, Vol. 7(1):40
El Paso, Texas, border economics, Vol. 7(1):7–21
EMFAC (Emission FACtor) model, Vol. 7(2/3):2–4
Emissions control. See Air pollution, Environment
Employment
and accessibility improvements, Vol. 4(2/3):49–66
and parking, Vol. 2(1):93–106
Northridge earthquake, Vol. 1(2):21, 23–33
Environment. See also Air pollution
air transportation, Vol. 2(1):79–80, 85–86
highway construction costs and regulation, Vol. 2(1):45–60
impact of environmental protection measures on road construction costs, Vol. 2(1):45–60
policy and regulations, Vol. 2(1):45–59
Europe
air transportation statistics, Vol. 2(1):71–92
international crash statistics, Vol. 2(2):159–166
railways, efficiency/output, Vol. 3(3):61–68
travel demand, Vol. 3(3):1–31
European Community, crash statistics, Vol. 2(2):159–166
European Road Safety Charter, Vol. 7(1):62
Exports, transportation of, Vol. 7(2/3):93–97
Extreme values, Vol. 7(2/3):41–52
F
FARS. See Fatality Analysis Reporting System
Fatalities
hazardous material shipments, Vol. 3(1):83–85
international accident statistics, Vol. 2(2):159–166
rail, Vol. 3(1):85–86
trucking, Vol. 3(1):70, 83–85, 87–89
Fatality Analysis Reporting System (FARS), Vol. 4(1):3
Federal-aid highways, impact of environmental protection statutes on costs, Vol. 2(1):45–60
Federal Test Procedure (emissions testing), Vol. 3(2):2, 16–17, 39–47, 57–58
Finland
crash statistics, Vol. 2(2):159–166
elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)
Florida
highway speeds, Vol. 7(2/3):71–86
measuring vehicle travel by visitors, Vol. 5(2/3):83–90
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72
Forecasting
accuracy, Vol. 7(1):51–57
air transportation supply and demand, Vol. 2(1):76–77, 82–83
Akaike’s Information Criterion (AIC), Vol. 7(1):3
Bayesian Information Criterion (BIC), Vol. 7(1):3
borderplex econometric forecasting, Vol. 7(1):7–21
construction of highway links, Vol. 6(2/3):81–89
definitions
accuracy, Vol. 7(1):3
calendar effects, Vol. 7(1):2
ex-ante forecasts, Vol. 7(1):3
ex-post forecasts, Vol. 7(1):3
fit, Vol. 7(1):3
hold-out samples, Vol. 7(1):2
information criteria, Vol. 7(1):3
Theil’s U, Vol. 7(1):3
econometric, Vol. 7(1):7–21
freight weight and value flows, Vol. 6(2/3):67–80
highway, Vol. 7(1):61–68
mobile source emissions, Vol. 6(1):17–32
road safety forecasting, Vol. 7(1):61–68
urban demand, Vol. 1(3):26–28, 37
Foreign countries. See specific country
France
freight demand and mode choice, Vol. 2(2):149–158
transit strikes, Vol. 1(3):43–51
travel demand, Vol. 3(3):1–31
Freeways. See Highways
Freight. See also Commodity Flow Survey, Trucks
comparison of long-haul and metropolitan trucking, Vol. 3(3):83–89
crossing borders, Vol. 7(2/3):93–97
econometric forecasting, Vol. 7(1):7–21
estimating weight and value flows, Vol. 6(2/3):67–80
flows, Vol. 7(1):23–37
planning, Vol. 7(1):23–37
rail, Vol. 4(1):75–79
shipper surveys, Vol. 3(3):83–89
Transportation Output Index, Vol. 6(2/3):1–27

G
Gasoline
emissions reductions, Vol. 3(2):7, 29–30
reformulated gasoline (RFG), Vol. 3(2):57–58
Geographic information systems (GIS), Vol. 6(1):59–69
used for evaluating neighborhood accessibility, Vol. 4(2/3):17, 29, 37, 38, 75–77
Georgia
Atlanta, parking, Vol. 2(1):93–107
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Ghana, travel demand, Vol. 3(3):1–31
Gibbs sampler, Vol. 7(2/3):59–70
GIS. See Geographic information systems
Great Britain
Planning Policy Guidance, Vol. 4(2/3):76
road safety forecasting, Vol. 7(1):61–68
travel demand, Vol. 3(3):1–31
Greece, crash statistics, Vol. 2(1):45–60
Government revenues, vehicle license fees, Vol. 2(2):133–147
Greenhouse gases. See Climate change
Gross Domestic Product
transportation driven, Vol. 3(1):25–28
transportation related, Vol. 3(1):21–24
H
Handicapped persons. See Disabled persons
Hazardous materials, rail and truck shipment, Vol. 3(1):81–92

High-speed rail, value of time, Vol. 5(2/3):57–72
Highway Performance Monitoring System (HPMS), Vol. 6(1):60, 68
Highways
capacity, Vol. 5(1):25–45
congestion and delays, Vol. 2(2):123–130
construction of new links, Vol. 6(2/3):81–89
detours due to earthquake damage, Vol. 1(2):1–20
environmental regulation and costs, Vol. 2(1):45–60
impacts of bypasses on communities, Vol. 5(1):57–69
improvements, Vol. 1(3):65–79
induced travel demand, Vol. 3(1):1–14
inventory, Vol. 3(3):33–45
road construction and environmental statutes, Vol. 2(1):45–60
rural interstate, Vol. 7(2/3):71–86
speed limits, effect on number of fatal accidents, Vol. 4(1):1–26
trips, relationship to value of time data, Vol. 5(2/3):58–72
transportation costs, Vol. 4(1):81–103
HPMS. See Highway Performance Monitoring System

I
Idaho, truck flows, Vol. 1(1):69, 72
Illinois
commodity inflows, Vol. 7(1):35
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Imports, transportation of, Vol. 7(2/3):93–97
Income, and equity of vehicle license fees, Vol. 2(2):133–147
Indexes
Air Travel Price Index, Vol. 7(2/3):41–52
extreme values, Vol. 7(2/3):41–52
Fisher index, Vol. 7(2/3):41–52
Laspeyres index, Vol. 7(2/3):43–52
Paasche index, Vol. 7(2/3):43–52
Taylor series, Vol. 7(2/3):41–52
Törnqvist index, Vol. 7(2/3):41–52
India, travel demand, Vol. 3(3):1–31
Indiana
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Infrastructure
highway, Vol. 4(1):90–91, 100
funding improvements, Vol. 5(2):83
improvements and safety, Vol. 3(1):81, 83, 90–91
port, Vol. 6(1):71–86
predicting construction of highway links, Vol. 6(2/3):81–89
use of air transport statistics, Vol. 2(1):78–79, 84–85

Injuries
hazardous materials, Vol. 3(1):85–86
international accident statistics, Vol. 2(2):159–166
input-output coefficient, Vol. 3(1):53–66
Intermodal transportation, mode choice, Vol. 2(2):149–158
International perspectives, See also Europe, specific countries
- crash statistics, Vol. 2(2):159–166
- motor vehicle noise, Vol. 1(3):9
- travel demand, country comparisons, Vol. 3(3):1–31
- urban congestion, air pollution, Vol. 3(2):85–102
- urban transport modeling, Vol. 3(1):42–49
International travel demand, Vol. 3(3):1–31
Investment
- transportation improvements, Vol. 1(3):65–78
Iowa
Ireland, crash statistics, Vol. 2(2):159–166
Italy, crash statistics, Vol. 2(2):159–166
ITS. See Intelligent transportation systems

J
Japan
- crash statistics, Vol. 2(2):159–166
- travel demand, Vol. 3(3):1–31

K
Kansas
- impacts of bypasses on communities, Vol. 5(1):59
Kentucky
- Medicaid transit service, Vol. 5(2/3):73–81
- truck flows, Vol. 1(1):69, 72
Korea, trip time in the NW-SE corridor, Vol. 5(2/3):57–72

L
Labor markets and accessibility modeling, Vol. 4(2/3):54, 57, 63–64
Land-use planning
- policy creation, Vol. 6(1):1–16
Least squares estimation
- demand elasticity on tolled motorways, Vol. 6(2/3):99–102
- effects of alcohol and speed on older drivers, Vol. 6(2/3):51–65
- motor vehicle crash analysis, Vol. 6(1):40–55
Lebanon, urban congestion, air pollution, Vol. 3(2):85–102
Legislation, federal
- Clean Air Act, Vol. 3(2):2–3, 5
- Department of Transportation Act, Vol. 2(1):47–48
- Highway Safety Act, Vol. 3(3):71
- Intermodal Surface Transportation Efficiency Act, Vol. 3(3):71
- various, Vol. 2(1):48
Licenses and licensing
- vehicle license fees, Vol. 2(2):133–147
Light trucks. See also Trucks/trucking
- accidents risks, Vol. 2(1):27, 36–43
- emissions, Vol. 3(2):49–63
- ownership and use, Vol. 3(3):47–60
Linear captivity models, to determine demand elasticities, Vol. 5(1):27
Linear logit models, to determine demand elasticities, Vol. 5(1):27
Logit models
- freight travel time and reliability, Vol. 3(3):83–89
- parking and travel behavior, Vol. 2(1):95
- vehicle type by driver, Vol. 3(3):56–58
Loglinear models, Vol. 4(1):75–79
Louisiana
- truck flows, Vol. 1(1):69, 72
Luxembourg, crash statistics, Vol. 2(2):159–166

M
Malaysia, motorcycle crashes, Vol. 7(2/3):27–39
Maintenance and repair, pollutant emissions, Vol. 3(2):6, 16, 92
Markov Chain Monte Carlo, Vol. 7(2/3):59–70
Maryland
- induced travel demand, Vol. 3(1):1–14
- study of road capacity and VMT, Vol. 5(1):28
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Mass transit. See Transit
Massachusetts
commodity inflows, Vol. 7(1):31
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
MEASURE (Mobile Emissions Assessment System for Urban and Regional Evaluation), Vol. 3(2):49–63
Meta-analyses
railway efficiency/output, Europe, Vol. 3(3):61–68
travel demand, country comparisons, Vol. 3(3):1–31
Mexico
border economics, Vol. 7(1):7–21
Michigan
time-use behavior model, Vol. 5(1):39
Mileage. See also Vehicle-miles of travel as a determinant of truck accidents, Vol. 3(3):69, 71, 74
Minivans. See Light trucks
Minneapolis-St. Paul, MN
correlation of highway links, Vol. 6(2/3):81–89
Minnesota
impacts of bypasses on communities, Vol. 5(1):558
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):67, 69, 72
Mississippi
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Missouri
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Mobile mapping system, Vol. 3(3):33–46
MOBILE (Mobile Source Emissions Factor Model), Vol. 7(2/3):2
MOBILE6 (Mobile Source Emissions Factor Model) vehicle emissions model, Vol. 3(2):39–47
Mobility
induced travel demand, Vol. 3(1):1–14
international travel demand, Vol. 3(3):1–31
during transit strikes, Vol. 1(3):43–51
models, Vol. 3(3):55–57
travel budgets, Vol. 3(3):1–31
Models
analysis of covariance vehicle emissions (ANCOVA), Vol. 3(2):49–63
Bayesian network model for crashes, Vol. 7(2/3):13–26
binomial logit, Vol. 6(2/3):87–88
binomial regression, person-trips, Vol. 3(3):51–53
borderplex, Vol. 7(1):7–21
forecasting traffic flows, Vol. 5(1):52, 54, 55
Crashes, Vol. 6(1):33–57
disaggregated choice, Vol. 1(1):1
dynamic congestion, Vol. 4(2/3):6–8
Dynamic Harmonic Regression, Vol. 7(1):43, 49–59
Dynamic Transfer Function Causal Model, Vol. 7(1):43–49
econometric, Vol. 7(1):87–101
impacts of bypasses on communities, Vol. 5(1):561
emissions, Vol. 3(2):65–84
emissions control deterioration, Vol. 3(2):39–47
fixed-effect
induced travel demand, Vol. 3(1):6–9, 11
general noise cost, motor vehicle use, Vol. 1(3):1–24
generalized linear model, Vol. 7(2/3):27–39
gravity, Vol. 7(1):24
input-output, Vol. 7(1):23–37
freight, Vol. 3(1):53–66
origin-destination matrices, Vol. 5(2/3):47
linear captivity, to determine demand elasticities, Vol. 5(1):27
linear logit, to determine demand elasticities, Vol. 5(1):27
linear regression, speed limits and fatal highway crashes, Vol. 4(1):2
linear trend, speed limits and fatal highway crashes, Vol. 4(1):3
logit, parking and travel behavior, Vol. 2(1):95
regression, Vol. 6(1):17, 20–25, 23–31
long-term memory, forecasting traffic flows, Vol. 5(1):51
MOBILE (Mobile Source Emissions Factor Model), Vol. 6(1):17–32
MOBILE6 (Mobile Source Emissions Factor Model) vehicle emissions, Vol. 3(2):39–47; Vol. 6(1):17–32
modal emissions, Vol. 3(2):31
mode choice, Vol. 3(3):53–54
motor vehicle ownership, Vol. 3(3):53–54
multinomial logit, Vol. 2(2):152–153
containerized cargo shippers’ behavior, Vol. 6(1):74–80
freight travel time and reliability, Vol. 3(3):83–89
mode choice, Vol. 3(3):55–57
MVEI7G vehicle emissions, Vol. 3(2):85–101
naive, forecasting traffic flows, Vol. 5(1):51–52
network assignment model, Vol. 5(2/3):57–72
nonlinear cost model, Vol. 6(2/3):81–89
nonlinear, for neural networks, Vol. 5(1):52
path-based accessibility, Vol. 4(2/3):79–90
prediction, Vol. 7(2/3):27–39
probit
ordered, to study demand elasticity, Vol. 6(2/3):102–103
ordered, to study vehicle occupancy, Vol. 3(3):53–55
Determinants of trucking safety, Vol. 3(1):69–79
rail freight shipments, Vol. 4(1):74–79
random-effects
highway construction costs, Vol. 2(1):50–57
regression
trucking safety, Vol. 3(1):75
seemingly unrelated regression estimation (SURE)
structural
traffic crashes, Vol. 7(2/3):13–26
traffic simulation, Vol. 5(1):1, 16
transportation in urban areas, Vol. 3(1):31–52
trips per vehicle, Vol. 3(3):51–52
use of light-duty and passenger cars, Vol. 3(3):47–60
validation of, Vol. 5(1):1–2
vehicle emissions, Vol. 3(2):29–38
vehicle emissions with MEASURE (Mobile Emissions Assessment System for Urban and Regional Evaluation), Vol. 3(2):49–63
vehicle-miles of travel, Vol. 3(3):50–51
vehicle occupancy, Vol. 3(3):51–52
vehicle ownership, Vol. 3(3):57–59
weighted least squares model of vehicle-miles of travel, Vol. 3(3):50
Montana, truck flows, Vol. 1(1):69, 72
Monte Carlo simulation
model of commuters’ activities, Vol. 5(2/3):19, 31, 33
roadway traffic crashes, Vol. 6(1):39–57
Motorcycles
license fees, California, Vol. 2(2):133–147
noise pollution, Vol. 1(3):10–11
Motor vehicles. See also Passenger cars, Trucks/trucking
automatic vehicle identification, Vol. 7(2/3):53–70
Vol. 7(2/3):13–26
emissions, Vol. 7(2/3):1–12
fatalities, Vol. 6(1):34, 38, 54; Vol. 7(2/3):13–26, 27–39
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14
license fees, Vol. 2(2):133–147
light trucks and passenger cars, Vol. 3(3):47–60
models, Vol. 3(3):50–51
motor vehicle ownership and use, 11, 17, Vol. 2(1):3–7
occupancy models, Vol. 3(3):53–54
operating costs, Vol. 4(1):86–87
ownership and use, 14–16; Vol. 2(1):1–17; Vol. 2(1):
58, 65; Vol. 5(2/3):21
passenger car ownership and use, Vol. 3(3):47–60
social costs, Vol. 1(1):15–42
speed and speed limits, Vol. 3(3):69–81
unregistration rates, Vol. 7(2/3):1–12
vehicle-miles of travel, Vol. 3(1):1–14
crashes, Vol. 1(1):76, 77, 80, 83, 84–88;
Multinomial logit models, freight travel time and reliability, Vol. 3(3):83–89
Multiple serial correlation, transit investment, Vol. 2(2):113–121

N

NAFTA. See North American Free Trade Agreement
National Ambient Air Quality Standards, Vol. 6(1):17–18
National Cooperative Highway Research Program
research on bypasses, Vol. 5(1):59
tourism travel project, Vol. 5(2/3):84
National Highway Network, Vol. 6(2/3):73–74
National Household Travel Survey, Vol. 5(2/3):89–90
Nationwide Personal Transportation Survey (NPTS),
Nebraska, truck flows, Vol. 1(1):69, 72
Nevada
hazardous materials shipments, Vol. 3(1):82
truck flows, Vol. 1(1):68, 69, 72
Netherlands

- crash statistics, Vol. 2(2):159–166
- elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)
- travel demand, Vol. 3(3):1–31
- travel surveys of arrival and departure times, Vol. 5(1):71–82

New Jersey

- truck flows, Vol. 1(1):69, 72

New Mexico, truck flows, Vol. 1(1):68, 69, 72

New York

- JFK International Airport, air cargo, Vol. 7(2/3):93–97
- South Bronx, accessibility to jobs, Vol. 4(2/3):49–66
- truck flows, Vol. 1(1):69, 71, 72

New Zealand, crash statistics, Vol. 2(2):159–166

Noise costs

- air transportation, Vol. 2(1):79, 85

direction of change, Vol. 5(1):53
rank correlation, Vol. 5(1), 53
signs test, Vol. 5(1):52
Wilcoxon test on location, Vol. 5(1):52–53, 54
Wilcoxon test on variance, Vol. 5(1):53

North American Free Trade Agreement (NAFTA), Vol. 7(1):9, 18

North Carolina

- induced travel demand, Vol. 3(1):1–14
- study of road capacity and VMT, Vol. 5(1):28
- truck flows, Vol. 1(1):69, 72

- buses, Vol. 1(2):4, 7, 11
- businesses
 - detours due to damage by the earthquake, Vol. 1(2):1–20
 - goods movement after the earthquake, Vol. 1(2):37–48
 - reconstruction after the earthquake, Vol. 1(2):1–20

- impact on urban areas, Vol. 1(2), 1–73
- trucks and trucking, Vol. 1(2):37–48, 57, 58

Norway

- travel demand, Vol. 3(3):1–31
- elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)
- NPTS. See Nationwide Personal Transportation Survey

Ohio

- commodity inflows, Vol. 7(1):34
- truck flows, Vol. 1(1):69, 72

Oklahoma

- truck flows, Vol. 1(1):69, 72

On-time performance of long-haul and metropolitan freight, Vol. 3(3):83–89

Opportunities approach (accessibility modeling), Vol. 4(2/3):33–34

Oregon

- truck flows, Vol. 1(1):69, 72

estimating freight weight and value flows, Vol. 6(2/3):67–80

Ozone layer and air transportation, Vol. 2(1):79–80

Passenger cars. See also Motor vehicles

- ownership and use, Vol. 3(3):47–60

P

- Parking, Vol. 2(1):93–106
- Atlanta, parking management, Vol. 2(1):93–107
- generation, Vol. 6(1):1–16
- light trucks and passenger cars, Vol. 3(3):57
- Northridge earthquake, Vol. 1(2):19
- subsidies, Vol. 2(1):103–104

Passenger cars. See also Motor vehicles
Path-based accessibility (accessibility modeling), Vol. 4(2/3): 79–91
Pennsylvania
 commodity inflows, Vol. 7(1):33
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Physically handicapped persons. See disabled persons
Pickup trucks. See Light trucks
PIERS Database. See Port Import Export Reporting Service
Planning and policy
 creating land-use scenarios, Vol. 4(1):39–49
Police accident reports
Policy
 environmental policy, Vol. 2(1):45–59
use of surveys and models in policy formation, Vol. 3(1):31–52
Pollution. See Air pollution
Port Import Export Reporting Service (PIERS), Vol. 6(2/3): 73–79
Portland, Oregon, sidewalk inventory, Vol. 4(2/3):74–75
Ports (air, land, and water), Vol. 7(2/3):93–97
Portugal, crash statistics, Vol. 2(2):159–166
Probit estimation, determinants of safety in trucking industry, Vol. 3(1):69–79
Probit models
 motor vehicle trip occupancy, Vol. 3(3):54–55
Productivity analysis
 transportation projects, Vol. 1(3):65–78
use of air transport statistics, Vol. 2(1):77–78, 83–84
 commuting during transit strikes, France, Vol. 1(3):43–51
costs, Vol. 2(2):113–121
fares, Vol. 7(1):40
forecasts, Vol. 7(1):39–59
services to Medicaid recipients, Vol. 5(2/3):73–81
strikes, Vol. 1(3):43–51
timetables, Vol. 5(1):79
travel demand, country comparisons, Vol. 3(3):1–31
urban transportation, Australia, Vol. 3(1):31–52
voucher programs for physically handicapped persons in rural areas, Vol. 2(1):61–69
R
Railways, Vol. 7(1):79–84
 Car Waybill Sample, Vol. 4(1):76, 79
efficiency/output of European railways, Vol. 3(3):61–68
freight demand and mode choice, Vol. 2(2):149–158
hazardous materials shipment, Vol. 3(1):81–92
modeling freight shipments, Vol. 4(1):74–79
trips, relationship to value of time data, Vol. 5(2/3):58–72
Reformulated gasoline, Vol. 3(2):50–61
Regional analysis
 commodity flow data, Vol. 7(1):23–37
econometric forecasting, Vol. 7(1):7–21
Regression analysis, Vol. 2(1):101–103
 crashes and traffic volume, Vol. 4(1):89–90
 impacts of bypasses, Vol. 5(1):59
 induced travel demand, Vol. 3(1):10, 12–13
 parking and travel behavior, Vol. 2(1):95, 101–103
 parking and trip generation rates, Vol. 6(1):1–16
 vehicle license fees, Vol. 2(2):140–143
 vehicle use and household characteristics, Vol. 2(1):13–16
Regression models
 binomial
 person-trips, Vol. 3(3):51–53
 of person-trips per vehicle, Vol. 3(3):51–53
Remote sensing (emissions testing), Vol. 3(2):3–4
RFG. See Reformulated gasoline
Rhode Island, truck flows, Vol. 1(1):69, 72
Road construction
 affects of additional capacity on travel demand, Vol. 5(1):25–45
 impact of environmental protection statutes, Vol. 2(1):45–60
Rough set analysis
Rural areas
 transit services to Medicaid recipients, Vol. 5(2/3):73–81
 transit vouchers for persons with disabilities, Vol. 2(1):61–69
S
Safety. See also Accidents, Crashes
 aviation, Vol. 2(1):79, 85
determinants of truck crashes, Vol. 3(1):69–79
forecasting
 highway, Vol. 7(1):61–68
 road, Vol. 7(1):61–68
 hazardous materials, rail and truck shipments, Vol. 3(1):81–92
 highway safety and older drivers, Vol. 6(2/3):51–65
 modeling traffic crashes, Vol. 7(2/3):13–26
 motorcycle crashes in Malaysia, Vol. 7(2/3):27–39
rail, Vol. 3(1):81–92
traffic, Vol. 6(1):33–57
trucking, Vol. 3(1):69–79, 81–92

Sampling
freight travel time and reliability, Vol. 3(3):86, 88
motor vehicle emissions, Vol. 3(2):1, 9–10, 28, 42, 55
random sampling for traffic counting, Vol. 6(1):59–69
travel demand, country comparisons, Vol. 3(3):6
unregistered vehicles, Vol. 7(2/3):3–6
San Diego, increased roadway capacity, Vol. 5(1):27
San Francisco
increased roadway capacity, Vol. 5(1):27
San Francisco Bay Area Rapid Transit
customer satisfaction among riders, Vol. 4(2/3):71
School bus ridership, Vol. 4(1):v
Seaports, international cargo, Vol. 7(2/3):93–97
Seemingly unrelated regression estimation (SURE) model,
Sensitivity analysis
air quality, Vol. 3(2):96
motor vehicle noise costs, Vol. 1(3):16–19
46–47
Serial correlation analysis, Vol. 2(2):113–121
Simultaneity bias, induced travel demand, Vol. 3(1):1–14
Singapore, travel demand, Vol. 3(3):1–31
Sleep as a determinant of truck accidents, Vol. 3(1):69,
71, 74
Slovenia, motor vehicle accidents, Vol. 7(2/3):13–26
Social cost analysis, motor vehicle use (U.S.), Vol.
1(1):15–42
Social factors
disabled persons, rural vouchers, Vol. 2(1):61–70
motor vehicle use costs, Vol. 1(1) 15–42; Vol. 1(3):1–24
Socioeconomic status. See also Educational attainment
disabled persons, rural vouchers, Vol. 2(1):61–70
induced travel demand, Mid-Atlantic, Vol. 3(3):7–13
light trucks and passenger cars, Vol. 3(3):47–60
motor vehicle emissions, Vol. 3(2):6
parking, zoning management, Vol. 2(1):96, 98–99,
104–105
travel demand, country comparisons, Vol. 3(3):1–31
vehicle license fees, Vol. 2(2):135–137
South Bronx, New York, accessibility improvements and
South Carolina
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):69, 72
Southern California Planning Model (SPCM), Vol.
1(2):21–35
South Dakota, truck flows, Vol. 1(1):67, 69, 72
Southwest Airlines effect, Vol. 7(1):87–101
Space-time prisms
accessibility within the transportation network, Vol.
4(2/3):1–14
Spain
crash statistics, Vol. 2(2):159–166
demand elasticity on tolled motorways, Vol. 6(2/3):91–108
Speed and speed limits. See also Traffic congestion
and older drivers, Vol. 6(2/3):51–65
effect on motor vehicle crashes, Vol. 6(1):37–38, 51
emissions and, Vol. 3(2):15–28, 34–37, 90–91, 92–93,
96–99
hazardous materials shipments, Vol. 3(1):69, 78, 80,
88, 90
in relation to funding, Vol. 3(3):69, 70–71
minimum and maximum speeds, Vol. 7(2/3):71–86
monitoring in traffic management, Vol. 3(3):69–80
71–72
73
noise level and, Vol. 1(3):6, 10, 11, 19–20
personal transportation surveys, Vol. 1(3):58
on rural interstates, Vol. 7(2/3):71–86
traffic management monitoring program, Vol. 3(3):69–81
travel demand, country comparisons, Vol. 3(3):8–9, 27
travel speed and time, Vol. 5(1):25, 33
truck drivers, Vol. 3(1):69, 78, 81, 88, 90
Sport utility vehicles. See Light trucks
Statistical significance, Vol. 6(1):1–16
Strikes
commuter impacts, Vol. 1(2):43–51
Supply and demand. See also Sampling
air transportation, Vol. 2(1):76–77, 82–83
final demand of transportation, Vol. 3(1):15, 19–21
freight demand and mode choice, Vol. 2(2):149–158
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14
investment, macroeconomic analyses, Vol. 1(3):72
railways, European, efficiency/output, Vol. 3(3):61–68
travel demand, country comparisons, Vol. 3(3):1–31
Vol. 3(1):53, 56–58
light trucks and passenger cars, Vol. 3(3):47–60
motor vehicle ownership and use, Vol. 2(1):1–17
urban transport, Australia, Vol. 3(1):31, 39, 42–51
SURE. See Seemingly unrelated regression estimation model
Surveys
business impacts of Northridge earthquake, Vol.
1(2):49–62
DIRECTIONS Travel Intelligence System, Vol. 5(2/3):85, 89
freight shippers, Australia, Vol. 3(3):83–89
Los Angeles area trucking companies, Vol. 1(2):37–48
Medicaid transit services, Vol. 5(2/3):77–81
role in policy formation, Vol. 3(1):31–52
travel during strikes, France, Vol. 1(3):43–51
arrival and departure times, Vol. 5(1):71–82
measuring tourist vehicle travel, Vol. 5(2/3):83–90
truck drivers, Vol. 3(1):69–79
unregistered vehicles, Vol. 7(2/3):1–12
urban transport experts, Vol. 3(1):43–48
value of time data, Vol. 5(2/3):57–72
SUVs. See Light trucks
Sweden
accessibility measures, Jämtland, Vol. 4(2/3):83–89
arrival and departure times, travel survey, Vol. 5(1):71–82
crash statistics, Vol. 2(2):159–166
costs of traffic congestion, Vol. 2(2):123–130
effects of road construction, Vol. 5(1):26, 33
and driver behavior, Vol. 5(1):3
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14
intervention analysis, Vol. 7(1):69–85
pooling forecasts, Vol. 7(1):87–101
structural, Vol. 7(1):69–85
transit costs, multiple serial correlation, Vol. 2(2):113–121
Toll demand elasticity, Vol. 6(2/3):91–108
Tourism, measuring vehicle travel, Vol. 5(2/3):83–90
Traffic congestion
aggregated time series analysis, Vol. 1(1):3
and air pollution, Vol. 3(2):85–101
and vehicle emissions, Vol. 3(2):85–101
effects of road construction, Vol. 5(1):26, 33
and driver behavior, Vol. 5(1):3
impacts of bypasses on communities, Vol. 5(1):57–69
modeling, vol. 4(2/3):6–8
study of urban congestion, Vol. 5(1):28
Traffic safety, Vol. 6(1):33–57
Traffic volume
Trains. See Railways
Transborder Surface Freight Database, Vol. 6(2/3):73–79
Transit. See Public transportation
Transportation indicators, Vol. 7(1):69–85
Transportation Output Index, Vol. 6(2/3):1–27
Transportation Satellite Accounts, Vol. 5(2/3):1–18
Travel behavior
accidents on freeways, Vol. 2(2):123–131

T
Telecommuting and Northridge earthquake, Vol. 1(2):35
Tennessee
time-use behavior model, Vol. 5(1):39
track flows, Vol. 1(1):69, 72
Texas
El Paso, border economics, Vol. 7(1):7–21
impacts of bypasses on communities, Vol. 5(1):57, 59, 60
link travel time, Vol. 7(2/3):53–70
time-use behavior model, Vol. 5(1):39
truck flows, Vol. 1(1):68, 69, 72
Theil’s U, Vol. 7(1):3, 16–19, 21
Time factors
and accessibility, Vol. 4(2/3):59, 65
accidents on freeways, Vol. 2(2):123–131
arrival and departure times, travel survey, Vol. 5(1):71–82
bus fares, time-based, Vol. 1(1):50–61
costs of traffic congestion, Vol. 2(2):123–130
freight travel time and reliability, Vol. 3(3):83–89
long-haul and metropolitan freight, Vol. 3(3):83–89
light trucks and passenger cars, Vol. 3(3):56
space-time accessibility measures, Vol. 4(2/3):1–14
motor vehicle emissions, Vol. 3(2):76–79
roadway inventory data acquisition, Vol. 3(3):33, 43–44
traffic flows, Vol. 5(1):49–52, 55
traffic signals, Vol. 5(1):3–5, 15, 18, 20, 49
transit strikes, France, Vol. 1(3):43–51
travel demand, country comparisons, Vol. 3(3):1–31
travel time, Vol. 7(2/3):53–70
calculations, Vol. 5(2/3):43–45
value of time, Vol. 5(2/3):57–72
Time series analyses
forecasting traffic flows, Vol. 5(1):51
induced travel demand, Mid-Atlantic, Vol. 3(1):1–14
intervention analysis, Vol. 7(1):69–85
pooling forecasts, Vol. 7(1):87–101
structural, Vol. 7(1):69–85
transit costs, multiple serial correlation, Vol. 2(2):113–121
Toll demand elasticity, Vol. 6(2/3):91–108
Tourism, measuring vehicle travel, Vol. 5(2/3):83–90
Traffic congestion
aggregated time series analysis, Vol. 1(1):3
and air pollution, Vol. 3(2):85–101
and vehicle emissions, Vol. 3(2):85–101
effects of road construction, Vol. 5(1):26, 33
and driver behavior, Vol. 5(1):3
impacts of bypasses on communities, Vol. 5(1):57–69
modeling, vol. 4(2/3):6–8
study of urban congestion, Vol. 5(1):28
Traffic safety, Vol. 6(1):33–57
Traffic volume
Trains. See Railways
Transborder Surface Freight Database, Vol. 6(2/3):73–79
Transit. See Public transportation
Transportation indicators, Vol. 7(1):69–85
Transportation Output Index, Vol. 6(2/3):1–27
Transportation Satellite Accounts, Vol. 5(2/3):1–18
Travel behavior
accidents on freeways, Vol. 2(2):123–131
Travel demand

- based on commuters’ activities, Vol. 5(2/3):19–20, 34
- country comparisons, Vol. 3(3):1–31
- economic impact of transportation, Vol. 3(1):15–30
- induced travel demand, Vol. 3(1):1–14
- international perspective, Vol. 3(3):1–31

Trip

- duration, Vol. 6(1):17–32
- generation, Vol. 6(1):1–16

- accident risk analyses, Vol. 1(1) 75–92; Vol. 2(1) 20, 26; Vol. 3(1):69–79, 36–43
- determinants of accidents, Vol. 3(1):69–79
- estimating truck traffic, Vol. 3(1):53–66

- light trucks
 - accidents, Vol. 2(1):27, 36–43
 - emissions, Vol. 3(2):49–63
 - ownership and use, Vol. 3(3):47–60
- long-haul freight, Vol. 3(3):83–89
- metropolitan freight, Vol. 3(3):83–89

- safety, Vol. 3(1):69–79
- surveys of Los Angeles area trucking companies, Vol. 1(2):37–48

U

Uniform Vehicle Code, Vol. 7(2/3):72

United Kingdom

- crash statistics, Vol. 2(2):159–166
- elasticity studies of public transport, Vol. 1(1):1, 7, 10–12 (passim)

Urban areas

- air pollution at intersections, Vol. 3(2):85–101
- earthquakes, Vol. 1(2), 1–73
- induced travel demand, Mid-Atlantic, Vol. 3(1):1–14

speed monitoring, Vol. 3(3):72–81

transportation models, Vol. 3(1):31–52

Utah

- land-use scenarios and transportation sketch planning, Wasatch Front, Vol 4(1):39–49
- truck flows, Vol. 1(1):68, 69, 72

Utility-based surplus approach (accessibility modeling), Vol. 4(2/3):35

V

Vans. See Light trucks

Vehicle license fees. See Motor vehicles

Vehicle-miles of travel (VMT), Vol. 3(1):1–14

- general, Vol. 3(1):74–75, 78
- hazardous materials, Vol. 3(1):87
- households and businesses, Vol. 5(2/3):1–18
- Mid-Atlantic, Vol. 3(1):1–14
- light trucks and passenger cars, Vol. 3(3):47–60
- measuring vehicle travel by visitors, Vol. 5(2/3):83–90
- models, Vol. 3(3):50–51
- motor vehicle ownership and use, 11, 17, Vol. 2(1):3–7
- noise, Vol. 1(3):5–6, 19
- railways, European, efficiency/output, Vol. 3(3):61–68
- social costs, Vol. 1(1):19, 27
- speed and speed limits, Vol. 3(3):69–81
- travel demand, Vol. 3(3):1–31 (passim)
- truck accidents on freeway ramps, Vol. 1(1):76, 77, 80, 83, 84–88
- truck traffic estimates, Vol. 1(3):90

Vehicle occupancy models, Vol. 3(3):53–54

Vehicle ownership

- equity of vehicle license fees by income, Vol. 2(2):135–140
- equity of vehicle license fees by location, Vol. 2(2):140–143
- light trucks and passenger cars, Vol. 3(3):47–60
- models, Vol. 3(3):57–59

Virginia

- study of road capacity and VMT, Vol. 5(1):28
- truck flows, Vol. 1(1):69, 72

VMT. See Vehicle-miles of travel

W

Washington (state)

- commodity inflows, Vol. 7(1):37
Washington, DC
study of road capacity and VMT, Vol. 5(1):28
truck accidents on freeway ramps, 75–92
truck flows, Vol. 1(1):64, 69, 72
Water pollution, motor vehicle use, Vol. 1(1):26, 30, 36, 37, 38
Water transportation
containerized cargo, Vol. 6(1):71–86
international freight, Vol. 7(2/3):93–97
vessel types, Vol. 7(2/3):97
West Germany, travel demand, Vol. 3(3):1–31
West Virginia, truck flows, Vol. 1(1):69, 72
Wetlands, transportation’s effects on, Vol. 2(1):48–50, 57
Wisconsin
impacts of bypasses on communities, Vol. 5(1):58
truck trips, Vol. 3(1):53–67
truck flows, Vol. 1(1):69, 72
Wyoming, truck flows, Vol. 1(1):68m 69, 72

Z
Zoning, parking management, Vol. 2(1):93–107